D.R. Clough Consulting

Fisheries Resource Consultants 6966 Leland Rd. Lantzville B.C. VOR 2H0 Ph/Fax: 390 2901 email: drclough@shaw.ca

Oct. 31, 2018

Attn: Ken Watson, Project Manager On behalf of City of Port Alberni 4850 Argyle Street, Port Alberni British Columbia. V9Y 1V8

RE: Sediment and Water Sampling Results - McLean Mill Pond

Introduction

On September 19, 2018 there was a dewatering of the Mclean Mill Pond during maintenance of the faulty valve on the dyke. The result was a release of pond water and sediments. Under our direction, TerraWest Environmental Ltd. conducted sediment and water samples on September 26, 2018. This report covers the sampling on that date.

Results

Sediment and Water Sampling Report

Attached is the report by TerraWest Environmental Ltd. dated October 30, 2018. This report provides the results of sampling in three Water and Soil sample locations. The sample locations were determined based on possible sources of contaminants on east and west side of the Mill pond as well in the centre of the pond just above the location of the discharge. A broad spectrum of analysis of potential contaminants was analyzed; The Sediment tests surveyed for; 27 Hydrocarbons, 31 Metals, six Chlorphenols, 12 Dioxins and 17 Furans. The Water was sampled for 30 Hydrocarbons, 29 Metals as well as seven Routine Parameters.

The results were compared against Contaminated Sites Regulation (CSR) Schedule 3.4 Generic Numerical Sediment Criteria for freshwater sensitive sediment and Schedule 3.2 Generic Numerical Water Standards for freshwater aquatic life, irrigation, livestock and drinking water use.

The Sediment sampling identified 12 exceedances in the 279 tests (93 per 3 sites). The exceedances were metals in the soils amongst all three sites and additionally for Chlorphenol and Dioxins/Furans at a single site (SS18-01). The exceedances ranged from 6% (Dioxin/Furans) to 275% (Acenaphthylene & Mercury) above the CSR for Sensitive Sediment.

In Water sampling, there were 177 relevant samples for CSR schedules. The exceedances were only in Cobalt. The Cobalt exceedances in all three sites ranging from 170 to 200% above the CSR for Drinking Water but well below the CSR for other uses including Aquatic Life and Agricultural uses.

Discussion

Exceedances

There are contaminated soil and water samples on the site. There were 93 Sediment sample parameters, 9 were found in exceedances in at least one site. The exceedances ranged from 6% to 275% using the CSR sensitive soils criteria; Mercury and Acenaphthylene were the highest in soils. In water; of the 59 tests, only Cobalt was high at all three sites.

Sample Sites:

The three September 26, 2018 sample sites were selected for being in or along the edge of the Mill Pond since it was the site that had released the water and suspended sediments. The sites were located approximately 60 m apart. Results now indicate contamination in all three, thus a further outward radius of sampling would be needed to determine the limits of contamination. Further sampling may also determine the source of contamination.

Sampling Error

There were some sampling disparities. When duplicate samples were compared and two metals; titanium and aluminum were 151% and 165% in skew with their other sample. More sampling will be needed to confirm these two variances.

Other Water Sampling

The Mclean Mill and Kitsuksis Creek have been surveyed for water quality by other means and organizations. A chronological bibliography of references provided by various groups and individuals is presented below, it is likely not a complete list;

- 1994, October Envirochem Special Projects Inc. McLean Mill National Historic Site, Port Alberni B.C. Contamination Assessment. For City of Port Alberni. This is a detailed survey of the Soil and water at the Mill site.
- 1995, July. Envirochem Special Projects Inc. Soil Remediation Summary, Mclean Mill National Historic Site, Port Alberni B.C. For City of Port Alberni. *A soil remediation report.*
- 2017, March, Envirochem Services Inc. Environmental Review and Opinion, Mclean Mill National Historic Site. For City of Port Alberni. *A reply to public concerns about contamination.*
- 2017, February. West Coast Aquatic Stewardship association. Clean Water in Alberni Inlet; A study of the water Quality and Marine Environments in the Alberni Inlet. Water chemistry analysis of the Alberni Area streams and inlet.
- 2018, Sep 21, MB Labs Ltd. Water Sample Report 4 sites at and below Mclean Mill. By Port Alberni City. *Broad spectrum lab analysis at 4 sites.*

Recommendations

Given there are exceedances in water and sediment samples. There is good cause to consider further sampling. But before further sampling is done, a review of the existing data is recommended in the fashion of a Phase 1 environmental review as suggested by our water quality experts at Terra West Ltd. As they have said in their report, collecting this information and analyzing it before declaring the sampling actions makes sense.

There are funds available for assistance to the City of Port Alberni to assist in the investigations, sampling and possible remediation. The Green Municipal Fund offers grants that may cover plans, feasibility studies, pilot projects and capital projects. (https://fcm.ca/home/programs/green-municipal-fund/what-we-

fund/eligibility/brownfields-funding.htm). Given the high environmental value of the Mclean Mill to the salmon community, there are funds such as the Pacific Salmon Community Salmon Fund and Royal Bank Blue Water fund that have helped with water studies in the past.

The Mclean Mill site through the years has been an example of collaborative partnerships with the City of Port Alberni, public service organizations (i.e. AVEA, West Coast Aquatic, Mclean Mill Historic Society,) as well as other levels of government and individuals. If this current situation can be called a problem, then I think that the people that care about the McLean Mill, and the Environment will achieve a solution.

sincerely

David R. Clough, RPBio.

TERRANVEST

Page 1 of 5

Mailing PO Box 58

Cowichan Bay, BC VOR 1NO Regional

3148-F Barons Road Nanaimo, BC V9T 4B5

D.R. Clough Consulting 6966 Leland Road, Lantzville, B.C. C.C., VOR 2H0

October 30, 2018

Attn: David R. Clough, R.P.Bio.

Re: SEDIMENT AND WATER SAMPLING RESULTS - Mclean Mill

TerraWest Environmental Inc. (TerraWest) was retained by D.R. Clough Consulting (the 'Client') to complete sediment and surface water sampling at 5633 Smith Road, Port Alberni, BC, herein referred to as the 'Subject Property' and/or the 'Site'. Historical industrial activities were previously identified on the Site including a lumber mill, Currently the Site is a historical park. TerraWest was supplied with an identified investigation area which, encompassed the mill's pond, and designated sample locations supplied from D.R. Clough Consulting, see Figure 1 and Figure 2.

1.0 FIELD ACTIVITIES

Sediment samples were obtained at three designated sampling locations by extending a hand auger into the benthos of the mill's pond and collecting approximately the top 20 cm to 40 cm of sediment. Captured water was carefully drained from the hand auger prior to sampling. Sediment was extracted from the hand auger and placed into laboratory-supplied 120 mL soil jars, along with 40 mL vials using designated soil plugs containing methanol preservative. The equipment was rinsed in the pond water at the sample location in attempt to minimize potential cross-contamination between other sample locations.

Surface water samples were collected at three designated sampling locations utilizing laboratory-supplied bottles that were filled to capacity by plunging the bottle directly into the water with the opening of the bottle downwards first, then tipping upwards within the water column allowing air bubbles to escape.

Photographs of the sediment and surface water sampling locations are attached to this letter.

Sediment samples were analyzed by Exova for potential contaminants of concern (PCOCs) including benzene, toluene, ethylbenzene, total xylenes, methyl tertiary butyl ether, styrene (BTEXSM), light extractable petroleum hydrocarbons (LEPH), heavy extractable petroleum hydrocarbons (HEPH), volatile petroleum hydrocarbons (VPH), polycyclic aromatic hydrocarbons (PAH), metals, polychlorinated phenols, dioxins and furans.

Surface water samples were analyzed by Exova for PCOCs including BTEXSM, EPH, VPH, LEPH/HEPH, PAHs and metals.

2.0 STANDARDS

Laboratory analytical results were compared to the BC Ministry of Environment and Climate Change Contaminated Sites Regulation (CSR) Schedule 3.4 Generic Numerical Sediment Criteria for freshwater sensitive sediment and Schedule 3.2 Generic Numerical Water Standards for freshwater aquatic life, irrigation, livestock, and drinking water use, herein referred to as the 'applicable standards'.

3.0 RESULTS

A summary of analytical results is presented in the Tables 1 through 8, attached.

3.1 SEDIMENT ANALYTICAL RESULTS

Laboratory analytical results indicated the sediment sample(s) reported concentrations exceeding the lowest applicable standards:

Sample	Parameter	Concentration		nedule 3.4 er Sediment
ID	raidificiei	Concentration	Sensitive Sediment*	Typical Sediment*
	Acenaphthylene	0.22 ug/g	0.08 ug/g	0.15 ug/g
	Naphthalene	0.63 ug/g	0.24 ug/g	0.47 ug/g
	Phenanthrene	0.44 ug/g	0.32 ug/g	0.62 ug/g
	Arsenic	19 ug/g	11 ug/g	20 ug/g
0010.01	Chromium (Total)	90 ug/g	56 ug/g	110 ug/g
SS18-01	Mercury	0.81 ug/g	0.3 ug/g	0.58 ug/g
	Zinc	280 ug/g	200 ug/g	380 ug/g
	Total Equivalency, polychlorinated dioxins and furans (PDCC and PCDF)	0.13840 ug/kg	0.13 ug/kg	0.26 ug/kg

Page 3 of 5

	Arsenic	12 ug/g	11 ug/g	20 ug/g
SS18-02	Chromium (Total)	90 ug/g	56 ug/g	110 ug/g
	Mercury	0.34 ug/g	0.3 ug/g	0.58 ug/g
2210.02	Chromium (Total)	96 ug/g	56 ug/g	110 ug/g
SS18-03	Mercury	0.33 ug/g	0.3 ug/g	0.58 ug/g

^{*} As per the BC CSR definitions. Sensitive Sediment standards apply; Typical Sediment standards are shown for comparative purposes only.

All other analyzed parameters were below the applicable standards.

3.2 SURFACE WATER ANALYTICAL RESULTS

Laboratory analytical results indicated the following surface water sample(s) reported concentrations exceeding the lowest applicable standards:

			CSR Schedule 3.2				
Sample ID	Parameter	Concentration	FW AQ1	IR ²	LS ³	DW ⁴	
SW18-01	Cobalt	1.7 ug/L	40 ug/L	50 ug/L	1,000 ug/L	1 ug/L	
SW18-02/	Cobalt	1.9 ug/L	40 ug/L	50 ug/L	1,000 ug/L	1 ug/L	
SW18-02A*	Cobalt	2.0 ug/L	40 ug/L	50 ug/L	1,000 ug/L	1 ug/L	
SW18-03	Cobalt	1.7 ug/L	40 ug/L	50 ug/L	1,000 ug/L	1 ug/L	

Notes:

All other analyzed parameters were below the applicable standards.

3.3 RELATIVE PERCENT DIFFERENCE ON DUPLICATE SAMPLES

A relative percent difference (RPD) value for surface water samples of less than 20% is generally considered an indicator of acceptable sampling and analytical precision, as per the British Columbia Field Sampling Manual for Continuous Monitoring and the Collection of Air, Air-Emission, Water, Wastewater, Soil, Sediment and Biological Samples. The BC Field Sampling Manual also specifies that RPD values between 20% and 50% may indicate an issue with sampling or analytical precision. It should be noted that as per the BC Field Sampling Manual, the values must be greater than five times the method detection limit to be included in the RPD calculation.

^{*} Represents duplicate sample

^{1 –} Freshwater Aquatic Life 2 – Irrigation 3 – Livestock 4 – Drinking Water

Page 4 of 5

The RPD between the surface water sample SS18-02 and duplicate sample SS18-02A exceeded the 20% and 50% guidelines for aluminum at 151% and titanium at 165%

All precautions were taken in the field to ensure integrity of samples was maintained and the potential for cross-contamination between samples was minimized. As reported in the laboratory analytical reports, all samples met Exova quality assurance and quality control standards. The exact reason why the RPD values exceeded the guideline is not known.

4.0 CONCLUSIONS & RECOMMENDATIONS

Laboratory analytical results indicated exceedances of applicable standards in both sediment and surface water samples obtained from the mill pond. Based on the findings of this sampling program, TerraWest recommends further delineation works be conducted to determine if sediment and surface water impacts extend beyond the initial sample locations. Additionally, TerraWest recommends an assessment of the wider mill property and historical uses to attempt to identify the source of the contaminants currently identified in the pond, in addition to full review of all historic reports provided by DR Clough Consulting on October 23, 2018.

5.0 LIMITATIONS & CLOSURE

TerraWest Environmental Inc. has prepared this report for the exclusive use of its Client, D.R. Clough Consulting, and may be relied upon by the Client for their private business purposes. Any other third party use of this report, or reliance placed on it, or decisions taken based on it, is the responsibility of such parties. TerraWest accepts no responsibility for any damages suffered by any third party, or any claims made by any third party as a result of decisions made or actions taken, based on this report. This report does not constitute any expression of legal opinion, and D.R. Clough Consulting is specifically advised to seek professional legal opinions with respect to applicable regulatory statutes in this matter.

Investigations described by this report were initiated on the Subject Property at the request of the Client. TerraWest's investigations were conducted in accordance with generally accepted practices of such environmental investigations. No other warranties are made, either expressed or implied.

The findings of this report are partially based on information provided to TerraWest by the Client and other individuals or organizations. While TerraWest believes that information was provided in good faith and has attempted to verify such information where possible, TerraWest does not accept any responsibility for any inaccuracies, deficiencies or omissions contained in this report, based on the use of such information.

These report findings are partially based on TerraWest's observations of Site environmental conditions, limited to the dates and specific locations of investigation. TerraWest offers no warranty, either expressed or implied, as to the presence or potential presence of any chemical substances or contamination on the Subject Property covered by this report. This report constitutes neither an endorsement nor a condemnation of the Subject Property.

A signed paper copy of this report constitutes the official and complete deliverable document of record in this matter. The complete report includes the main report text, Attachments and Appendices, as identified in the Table of Contents. Should this report be distributed by means of digital transmission, or copied in paper hardcopy form, TerraWest accepts no liability for the completeness, accuracy or digital compatibility of the files provided.

We trust this meets your requirements, and if there are any questions regarding the above please do not hesitate to contact the undersigned below.

Prepared by:

Derek
Nickel

3066

Suzanne Durnin
R.P. Bio
3004

Derek Nickel, Bise R.P.Bio.

Project Biologist

Reviewed by:

Suzanne Durnin, P.Ag.

QA/QC Manager

Enclosures:

Site Inspection Photographs

Figure 1. Site Location

Figure 2. Site Plan with Sample Locations

Table 1. Summary of Sediment Analytical Results – Petroleum Hydrocarbons

Table 2. Summary of Sediment Analytical Results – Metals

Table 3. Summary of Sediment Analytical Results - Phenols

Table 4. Summary of Sediment Analytical Results – Dioxins and Furans

Table 5. Summary of Surface Water Analytical Results - Petroleum Hydrocarbons

Table 6. Summary of Surface Water Analytical Results - Metals

Table 7. Summary of Surface Water Analytical Results – Routine Parameters

Table 8. Relative Percent Difference of Field Duplicate Samples

Laboratory Analytical Report

Photo 1. Looking west towards SS18-01 (bottom left corner) and mill pond.

Photo 2. Looking northeast towards mill pond outlet.

Photo 4. Looking at sediment sample from SS18-02.

Photo 5. Looking east towards SS18-03 in mill pond.

Photo 6. Looking east from SS18-03 over mill pond.

FIGURE 1. SITE LOCATION

CLIENT: D.R. CLOUGH CONSULTING

LOCATION: 5633 SMITH ROAD, PORT ALBERNI, BC

PROJECT: DCMM18-01 OCTOBER 2018 DATE:

CREATED BY: DNICKEL

LEGEND

SITE BOUNDARY

THIS FIGURE IS SUBJECT TO THE SAME LIMITATIONS OUTLINED IN THE REPORT BODY.

THIS FIGURE IS FOR INTERPRETATION ONLY AND IS INTENDED TO BE VIEWED IN COLOUR ON 8 1/2"X11" SIZED PAPER. THE BOUNDARIES AND SCALE DEPICTED ARE APPROXIMATE. SOURCE: GOOGLE EARTH

FIGURE 2. SITE PLAN WITH SAMPLE LOCATIONS

CLIENT: D.R. CLOUGH CONSULTING

LOCATION: 5633 SMITH ROAD, PORT ALBERNI, BC

PROJECT: DCMM18-01 OCTOBER 2018 DATE: CREATED BY: DNICKEL

LEGEND

SITE BOUNDARY

SEDIMENT SAMPLE LOCATION

SURFACE WATER SAMPLE LOCATION

SAMPLE EXCEEDS LOWEST APPLICABLE STANDARDS

THIS FIGURE IS SUBJECT TO THE SAME LIMITATIONS OUTLINED IN THE REPORT BODY.
THIS FIGURE IS FOR INTERPRETATION ONLY AND IS INTENDED TO BE VIEWED IN COLOUR ON 11"x17" SIZED PAPER.
THE BOUNDARIES AND SCALE DEPICTED ARE APPROXIMATE.
SOURCE: GOOGLE EARTH

Table 1. Summary of Sediment Analytical Results - Petroleum Hydrocarbons

Sample ID		SS18-01	SS18-02	SS18-03	CSR Sche	edule 3.4 ²
Matrix		Sediment	Sediment	Sediment		
Depth (m below surface grade)		0.0-0.4	0.0-0.4	0.0-0.4	Freshwate	r Sediment
Sample Date		26-Sep-18	26-Sep-18	26-Sep-18	0 111 0 11 13	T 1 10 11 13
Comments		Pond	Pond	Pond	Sensitive Sediment ³	Typical Sediment ³
PARAMETERS	Units		Analytical Results ¹			
Volatile Hydrocarbons						
Benzene	ug/g	<0.02	< 0.02	<0.02	n.s.	n.s.
Toluene	ug/g	<0.05	< 0.05	< 0.05	n.s.	n.s.
Ethylbenzene	ug/g	<0.05	< 0.05	< 0.05	n.s.	n.s.
Total Xylenes (m,p,o)	ug/g	<0.05	< 0.05	<0.05	n.s.	n.s.
Styrene	ug/g	<0.05	< 0.05	<0.05	n.s.	n.s.
Methyl t-Butyl Ether	ug/g	<0.05	< 0.05	< 0.05	n.s.	n.s.
Volatile Petroleum Hydrocarbons						
VHs ₆₋₁₀	ug/g	<50	<50	<50	n.s.	n.s.
Extractable Petroleum Hydrocarbons						
LEPH ₁₀₋₁₉	ug/g	49	25	<20	n.s.	n.s.
HEPH ₁₉₋₃₂	ug/g	1380	348	156	n.s.	n.s.
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	ug/g	< 0.03	< 0.03	< 0.03	0.055	0.11
Acenaphthylene	ug/g	0.22	< 0.03	< 0.03	0.08	0.15
Anthracene	ug/g	< 0.03	< 0.03	< 0.03	0.15	0.29
Benzo(a)anthracene	ug/g	< 0.03	0.08	0.06	0.24	0.46
Benzo(a)pyrene	ug/g	<0.03	< 0.03	< 0.03	0.48	0.94
Benzo(b+j)fluoranthene	ug/g	<0.06	< 0.06	<0.06	n.s.	n.s.
Benzo(g,h,i)perylene	ug/g	< 0.03	< 0.03	< 0.03	n.s.	n.s.
Benzo(k)fluoranthene	ug/g	< 0.03	< 0.03	< 0.03	n.s.	n.s.
Chrysene	ug/g	< 0.03	< 0.03	< 0.03	0.53	1.0
Dibenz(a,h)anthracene	ug/g	< 0.03	< 0.03	< 0.03	0.084	0.16
Fluoranthene	ug/g	0.3	0.07	0.07	1.5	2.8
Fluorene	ug/g	< 0.03	< 0.03	< 0.03	0.089	0.17
Indeno(1,2,3-c,d)pyrene	ug/g	< 0.03	< 0.03	< 0.03	n.s.	n.s.
2-Methylnaphthalene	ug/g	<0.03	< 0.03	< 0.03	0.12	0.24
Naphthalene	ug/g	0.63	< 0.03	< 0.03	0.24	0.47
Phenanthrene	ug/g	0.44	0.10	0.06	0.32	0.62
Pyrene	ug/g	0.28	< 0.03	< 0.03	0.54	1.1
Total PAH	ug/g	2.11	0.55	0.49	10.0	20.0

- 1 Data excerpted from Exova analytical reports; units as indicated
- 2 BC Contaminated Sites Regulation (CSR) Schedule 3.4 Generic Numerical Sediment Standards, site-specific pathways as noted above
- 3 As per the BC CSR definitions
- n.s. = No applicable standard
- < = Less than the laboratory method detection limit

Total PAH is the results for following 13 individual PAHs (acenaphthene, acenaphthylene, anthracene, benz(a) anthracene, benzo(a) pyrene, chrysene, dibenzo(a,h) anthracene, fluoranthene, fluorene, 2-methylnaphthalene, naphthalene, phenanthrene and pyrene)

Table 2. Summary of Sediment Analytical Results - Metals

Depth (m below surface grade)	Sample ID		SS18-01	SS18-02	SS18-03	CSR Sche	edule 3.4 ²
Depth (in below surface grade) 26-Sep-18 26-Sep-	Matrix		Sediment	Sediment	Sediment		
Comments Pond Pond Pond Sensitive Sediment ³ Typical Sediment ³ PARAMETERS Units Analytical Results ¹ Sensitive Sediment ³ Typical Sediment ³ Metas	Depth (m below surface grade)		0.0-0.4	0.0-0.4	0.0-0.4	Freshwate	r Sediment
Comments Pond	Sample Date		26-Sep-18	26-Sep-18	26-Sep-18	0 111 0 11 13	T 1 10 11 13
Metals John Metals <t< td=""><td>Comments</td><td></td><td>Pond</td><td>Pond</td><td>Pond</td><td>Sensitive Sealment</td><td>Typical Sediment</td></t<>	Comments		Pond	Pond	Pond	Sensitive Sealment	Typical Sediment
Aluminum ug/g 25000 27000 27000 n.s. n.s. n.s. Antimony ug/g 5.1 5.6 5.7 n.s. n.s. n.s. n.s. Antimony ug/g 5.1 5.6 5.7 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.	PARAMETERS	Units		Analytical Results ¹			
Antimony ug'g 5.1 5.6 5.7 ns. ns. ns. Assertic ug'g 12 12 11 11.0 220.0 Barlum ug'g 110 130 160 ns. ns. ns. ns. Seryillum ug'g 0.40 0.44 0.47 ns. ns. ns. ns. Cadmium ug'g 0.55 0.3 0.3 0.3 2.2 4.2 A.2 Calcium ug'g 7300 11000 9700 ns. ns. ns. ns. Chromium (Total) ug'g 24 29 26 56.0 110.0 Cobalt ug'g 24 27 29 ns. ns. ns. Copper ug'g 44000 44000 44000 ns. ns. ns. copper ug'g 44000 44000 ns. ns. ns. copper ug'g 15 8.4 4 for ns. ns. ns. copper ug'g 15 8.4 4 for ns. ns. ns. copper ug'g 13 14 16 ns. ns. ns. ms. dangersium ug'g 420 660 4400 ns. ns. ns. ns. copper ug'g 420 660 440 ns. ns. ns. ns. copper ug'g 420 660 440 ns. ns. ns. ns. copper ug'g 420 660 440 ns. ns. ns. ns. copper ug'g 420 660 440 ns. ns. ns. ns. copper ug'g 420 660 440 ns. ns. ns. ns. copper ug'g 420 660 440 ns. ns. ns. ns. copper ns. ns. copper ns. ns. copper ns. ns. copper ns. ns. ns. copper ns. copper ns. ns. ns. copper ns. ns. ns. copper ns. copper ns. ns. ns. copper ns. copper	Metals						
Arsenic ug/g 19 110 12 11 11.0 20.0 Barlum ug/g 110 130 160 ns. ns. Beryllium ug/g 0.40 0.44 0.47 ns. ns. Cadmium ug/g 0.55 0.3 0.3 2.2 4.2 Calcium ug/g 7300 11000 9700 ns. ns. Chromium(Total) ug/g 9 90 90 96 560 1100 Cobalt ug/g 24 27 29 ns. ns. Copper ug/g 94 99 96 1200 2400 Iton ug/g 15 8.4 4 57.0 1100 Libhium ug/g 133 14 16 ns. ns. Magnesium ug/g 690 800 8300 ns. ns. Manganese ug/g 690 800 8300 ns. ns. Manganese ug/g 420 660 460 ns. Manganese ug/g 420 660 460 ns. ns. Manganese ug/g 420 660 460 ns. ns. Macury ug/g 0.81 0.34 0.33 03 0.58 Marcury ug/g 0.81 0.34 0.33 0.3 0.58 Marcury ug/g 42 42 45 ns. ns. Nickel ug/g 42 42 45 ns. ns. Nickel ug/g 680 760 760 ns. ns. ns. Silicon ug/g 570 430 390 ns. ns. ns. Silicon ug/g 15 0.81 0.5 ns. ns. Ilhilium ug/g 17 0.81 0.81 0.5 ns. ns. Ilhilium ug/g 19 19 23 25 ns. ns. Ilhilium ug/g 19 20 100 1300 1100 ns. ns. ns. Ilhilium ug/g 19 20 1000 1300 1100 ns. ns. ns. Ilhilium ug/g 19 20 1000 1300 1100 ns. ns. ns. Ilhilium ug/g 19 19 23 25 ns. ns. Ilhilium ug/g 19 19 23 25 ns. ns. Ilhilium ug/g 19 150 150 160 ns. ns. ns.	Aluminum	ug/g	25000	27000	27000	n.s.	n.s.
Barlum ug/g 110 130 160 n.s. n.s. Beryllum ug/g 0.40 0.44 0.47 n.s. n.s. Cadmlum ug/g 0.55 0.3 0.3 2.2 4.2 Calcilum ug/g 7300 11000 9700 n.s. n.s. Chromium (Total) ug/g 90 90 96 56.0 110.0 Cobalt ug/g 94 99 96 120.0 240.0 ton ug/g 44000 42000 44000 n.s. n.s. tead ug/g 15 8.4 4 57.0 110.0 Uthium ug/g 13 14 16 n.s. n.s. Magnesium ug/g 600 8000 8300 n.s. n.s. Mercury ug/g 420 660 460 n.s. n.s. Mercury ug/g 0.4 <0.10	Antimony	ug/g	5.1	5.6	5.7	n.s.	n.s.
Beryllium ug/g 0.40 0.44 0.47 n.s. n.s. Cadmium ug/g 0.55 0.3 0.3 2.2 4.2 Calcilum ug/g 7300 11000 9700 n.s. n.s. Chromium (Total) ug/g 90 90 96 56.0 110.0 Cobalt ug/g 94 99 96 120.0 240.0 Ion ug/g 44000 42000 44000 n.s. n.s. Lead ug/g 15 8.4 4 57.0 110.0 Uthium ug/g 13 14 16 n.s. n.s. Magnesium ug/g 6900 8000 8300 n.s. n.s. Mercury ug/g 420 660 460 n.s. n.s. Molybdenum ug/g 42 42 45 n.s. n.s. Nickel ug/g 140 580 510 <td< td=""><td>Arsenic</td><td>ug/g</td><td><u>19</u></td><td><u>12</u></td><td>11</td><td>11.0</td><td>20.0</td></td<>	Arsenic	ug/g	<u>19</u>	<u>12</u>	11	11.0	20.0
Cadmium ug/g 0.55 0.3 0.3 2.2 4.2 Calcium ug/g 7300 11000 9700 n.s. n.s. Chromium (Total) ug/g 90 90 96 56.0 110.0 Cobalt ug/g 24 27 29 n.s. n.s. Copper ug/g 94 99 96 120.0 240.0 Iton ug/g 44000 42000 44000 n.s. n.s. Lead ug/g 15 8.4 4 57.0 110.0 Uthium ug/g 13 14 16 n.s. n.s. Magnesium ug/g 6900 8000 8300 n.s. n.s. Mangaese ug/g 420 660 460 n.s. n.s. Molydefenum ug/g 0.4 <0.10	Barium	ug/g	110	130	160	n.s.	n.s.
Calcium ug/g 7300 11000 9700 n.s. n.s. Chromium (Total) ug/g 90 90 96 56.0 110.0 Cobalt ug/g 24 27 29 n.s. n.s. Copper ug/g 94 99 96 120.0 240.0 Iron ug/g 44000 42000 44000 n.s. n.s. Lead ug/g 15 8.4 4 57.0 110.0 Uthium ug/g 13 14 16 n.s. n.s. Magnesium ug/g 6900 8000 8300 n.s. n.s. Margaresium ug/g 420 660 460 n.s. n.s. Mercury ug/g 0.81 0.34 0.33 0.3 0.58 Molybdenum ug/g 0.4 <0.10	Beryllium	ug/g	0.40	0.44	0.47	n.s.	n.s.
Chromium (Total) ug/g 90 90 96 56.0 110.0 Cobalt ug/g 24 27 29 n.s. n.s. Copper ug/g 94 99 96 120.0 240.0 Iton ug/g 44000 42000 44000 n.s. n.s. Lead ug/g 15 8.4 4 57.0 110.0 Lithium ug/g 13 14 16 n.s. n.s. Magnesium ug/g 6900 8000 8300 n.s. n.s. Manganese ug/g 420 660 460 n.s. n.s. Mercury ug/g 0.81 0.34 0.33 0.3 0.58 Molybdenum ug/g 0.4 <0.10	Cadmium	ug/g	0.55	0.3	0.3	2.2	4.2
Cobalt ug/g 24 27 29 n.s. n.s. Copper ug/g 94 99 96 120.0 240.0 Iron ug/g 44000 42000 44000 n.s. n.s. Lead ug/g 15 8.4 4 57.0 110.0 Lithium ug/g 13 14 16 n.s. n.s. Magnesium ug/g 6900 8000 8300 n.s. n.s. Manganese ug/g 420 660 460 n.s. n.s. Mercury ug/g 0.81 0.34 0.33 0.3 0.58 Molybdenum ug/g 0.4 <0.10	Calcium	ug/g	7300	11000	9700	n.s.	n.s.
Copper ug/g 94 99 96 120.0 240.0 Iron ug/g 44000 42000 44000 n.s. n.s. Lead ug/g 15 8.4 4 57.0 110.0 Lithium ug/g 13 14 16 n.s. n.s. Magnesium ug/g 6900 8000 8300 n.s. n.s. Manganese ug/g 420 660 460 n.s. n.s. Mercury ug/g 0.81 0.34 0.33 0.3 0.58 Molybdenum ug/g 0.4 <0.10	Chromium (Total)	ug/g	<u>90</u>	<u>90</u>	<u>96</u>	56.0	110.0
tron ug/g 44000 42000 44000 n.s. n.s. Lead ug/g 15 8.4 4 57.0 110.0 Lithium ug/g 13 14 16 n.s. n.s. Magnesium ug/g 6900 8000 8300 n.s. n.s. Manganese ug/g 420 660 460 n.s. n.s. Mercury ug/g 0.81 0.34 0.33 0.58 Molybdenum ug/g 0.4 <0.10 <0.10 n.s. n.s. Nickel ug/g 42 42 45 n.s. n.s. Phosphorus ug/g 1400 580 510 n.s. n.s. Potassium ug/g 680 760 760 n.s. n.s. Selenium ug/g 680 760 760 n.s. n.s. Selenium ug/g 570 430 390 n.s. n.s. Silicon ug/g 570 430 390 n.s. n.s. Silver ug/g 1.5 0.81 0.5 n.s. n.s. Sodium ug/g 19 23 25 n.s. n.s. Sodium ug/g 19 23 25 n.s. n.s. Thallium ug/g 2 1 0.8 n.s. n.s. Thallium ug/g 2 1 0.8 n.s. n.s. Thallium ug/g 19 1000 1300 1100 n.s. n.s. n.s. Vanadium ug/g 150 150 160 n.s. n.s. n.s. Itanium ug/g 150 150 160 n.s. n.s. n.s.	Cobalt	ug/g	24	27	29	n.s.	n.s.
Lead ug/g 15 8.4 4 57.0 110.0 Lithium ug/g 13 14 16 n.s. n.s. Magnesium ug/g 6900 8000 8300 n.s. n.s. Manganese ug/g 420 660 460 n.s. n.s. Mercury ug/g 0.81 0.34 0.33 0.3 0.58 Molybdenum ug/g 0.4 <0.10	Copper	ug/g	94	99	96	120.0	240.0
Lithium ug/g 13 14 16 n.s. n.s. Magnesium ug/g 6900 8000 8300 n.s. n.s. Manganese ug/g 420 660 460 n.s. n.s. Mercury ug/g 0.81 0.34 0.33 0.3 0.58 Molybdenum ug/g 0.4 <0.10	Iron	ug/g	44000	42000	44000	n.s.	n.s.
Magnesium ug/g 6900 8000 8300 n.s. n.s. n.s. Manganese ug/g 420 660 460 n.s. n.s. n.s. Mercury ug/g 0.81 0.34 0.33 0.3 0.58 Molybdenum ug/g 0.4 <0.10	Lead	ug/g	15	8.4	4	57.0	110.0
Manganese ug/g 420 660 460 n.s. n.s. n.s. Mercury ug/g 0.81 0.34 0.33 0.3 0.58 Molybdenum ug/g 0.4 <0.10 <0.10 n.s. n.s. Nickel ug/g 42 42 45 n.s. n.s. Phosphorus ug/g 1400 580 510 n.s. n.s. Potassium ug/g 680 760 760 n.s. n.s. n.s. Selenium ug/g 2 0.6 1 n.s. n.s. n.s. Silicon ug/g 570 430 390 n.s. n.s. n.s. Silver ug/g 1.5 0.81 0.5 n.s. n.s. n.s. Sodium ug/g 140 170 150 n.s. n.s. n.s. Strontium ug/g 4.0.5 <0.5 <0.5 n.s. n.s. n.s. Tian ug/g 2 1 0.8 n.s. <t< td=""><td>Lithium</td><td>ug/g</td><td>13</td><td>14</td><td>16</td><td>n.s.</td><td>n.s.</td></t<>	Lithium	ug/g	13	14	16	n.s.	n.s.
Mercury ug/g 0.81 0.34 0.33 0.3 0.58 Molybdenum ug/g 0.4 <0.10 <0.10 n.s. n.s. Nickel ug/g 42 42 45 n.s. n.s. Phosphorus ug/g 1400 580 510 n.s. n.s. Potassium ug/g 680 760 760 n.s. n.s. Selenium ug/g 2 0.6 1 n.s. n.s. Silicon ug/g 570 430 390 n.s. n.s. Siliver ug/g 1.5 0.81 0.5 n.s. n.s. Sodium ug/g 140 170 150 n.s. n.s. Strontium ug/g 9 23 25 n.s. n.s. Thallium ug/g 2 1 0.8 n.s. n.s. Titanium ug/g 100 1300 1100 n.s.	Magnesium	ug/g	6900	8000	8300	n.s.	n.s.
Molybdenum ug/g 0.4 <0.10 <0.10 n.s. n.s. Nickel ug/g 42 42 45 n.s. n.s. Phosphorus ug/g 1400 580 510 n.s. n.s. Potassium ug/g 680 760 760 n.s. n.s. Selenium ug/g 2 0.6 1 n.s. n.s. Silicon ug/g 570 430 390 n.s. n.s. Silver ug/g 1.5 0.81 0.5 n.s. n.s. Sodium ug/g 140 170 150 n.s. n.s. Strontium ug/g 19 23 25 n.s. n.s. Strontium ug/g <0.5	Manganese	ug/g	420	660	460	n.s.	n.s.
Nickel ug/g 42 45 n.s. n.s. Phosphorus ug/g 1400 580 510 n.s. n.s. Potassium ug/g 680 760 760 n.s. n.s. Selenium ug/g 2 0.6 1 n.s. n.s. Silicon ug/g 570 430 390 n.s. n.s. Silver ug/g 1.5 0.81 0.5 n.s. n.s. Sodium ug/g 140 170 150 n.s. n.s. Strontium ug/g 19 23 25 n.s. n.s. Thallium ug/g <0.5	Mercury	ug/g	<u>0.81</u>	0.34	0.33	0.3	0.58
Phosphorus ug/g 1400 580 510 n.s. n.s. Potassium ug/g 680 760 760 n.s. n.s. Selenium ug/g 2 0.6 1 n.s. n.s. Silicon ug/g 570 430 390 n.s. n.s. Silver ug/g 1.5 0.81 0.5 n.s. n.s. Sodium ug/g 140 170 150 n.s. n.s. Strontium ug/g 19 23 25 n.s. n.s. Strontium ug/g <0.5	Molybdenum	ug/g	0.4	< 0.10	<0.10	n.s.	n.s.
Potassium ug/g 680 760 760 n.s. n.s. Selenium ug/g 2 0.6 1 n.s. n.s. Silicon ug/g 570 430 390 n.s. n.s. Silver ug/g 1.5 0.81 0.5 n.s. n.s. Sodium ug/g 140 170 150 n.s. n.s. Strontium ug/g 19 23 25 n.s. n.s. Thallium ug/g <0.5	Nickel	ug/g	42	42	45	n.s.	n.s.
Selenium ug/g 2 0.6 1 n.s. n.s. Silicon ug/g 570 430 390 n.s. n.s. Silver ug/g 1.5 0.81 0.5 n.s. n.s. Sodium ug/g 140 170 150 n.s. n.s. Strontium ug/g 19 23 25 n.s. n.s. Thallium ug/g <0.5	Phosphorus	ug/g	1400	580	510	n.s.	n.s.
Silicon ug/g 570 430 390 n.s. n.s. Silver ug/g 1.5 0.81 0.5 n.s. n.s. Sodium ug/g 140 170 150 n.s. n.s. Strontium ug/g 19 23 25 n.s. n.s. Thallium ug/g <0.5	Potassium	ug/g	680	760	760	n.s.	n.s.
Silver ug/g 1.5 0.81 0.5 n.s. n.s. Sodium ug/g 140 170 150 n.s. n.s. Strontium ug/g 19 23 25 n.s. n.s. Thallium ug/g <0.5	Selenium	ug/g	2	0.6	1	n.s.	n.s.
Sodium ug/g 140 170 150 n.s. n.s. Strontium ug/g 19 23 25 n.s. n.s. Thallium ug/g <0.5	Silicon	ug/g	570	430	390	n.s.	n.s.
Strontium ug/g 19 23 25 n.s. n.s. Thallium ug/g <0.5	Silver	ug/g	1.5	0.81	0.5	n.s.	n.s.
Thallium ug/g <0.5 <0.5 <0.5 n.s. n.s. Tin ug/g 2 1 0.8 n.s. n.s. Titanium ug/g 1000 1300 1100 n.s. n.s. Vanadium ug/g 150 150 160 n.s. n.s. Zinc ug/g 280 130 97 200.0 380.0	Sodium	ug/g	140	170	150	n.s.	n.s.
Tin ug/g 2 1 0.8 n.s. n.s. Titanium ug/g 1000 1300 1100 n.s. n.s. Vanadium ug/g 150 150 160 n.s. n.s. Zinc ug/g 280 130 97 200.0 380.0	Strontium	ug/g	19	23	25	n.s.	n.s.
Titanium ug/g 1000 1300 1100 n.s. n.s. Vanadium ug/g 150 150 160 n.s. n.s. Zinc ug/g 280 130 97 200.0 380.0	Thallium	ug/g	< 0.5	<0.5	<0.5	n.s.	n.s.
Vanadium ug/g 150 150 160 n.s. n.s. Zinc ug/g 280 130 97 200.0 380.0	Tin	ug/g	2	1	0.8	n.s.	n.s.
Zinc ug/g <u>280</u> 130 97 200.0 380.0	Titanium	ug/g	1000	1300	1100	n.s.	n.s.
_	Vanadium	ug/g	150	150	160	n.s.	n.s.
7ironium 1/4/0 58 62 55	Zinc	ug/g	<u>280</u>	130	97	200.0	380.0
11.5. Ti.5.	Zirconium	ug/g	5.8	6.2	5.5	n.s.	n.s.

^{1 -} Data excerpted from Exova analytical reports; units as indicated

^{2 -} BC Contaminated Sites Regulation (CSR) Schedule 3.4 Generic Numerical Sediment Standards, site-specific pathways as noted above

^{3 -} As per the BC CSR definitions

n.s. = No applicable standard

< = Less than the laboratory method detection limit

Table 3. Summary of Sediment Analytical Results - Phenols

Sample ID		SS18-01	SS18-02	SS18-03	CSR Schedule 3.4 ²	
Matrix		Sediment	Sediment	Sediment		
Depth (m below surface grade)		0.0-0.4	0.0-0.4	0.0-0.4	Freshwater Sediment	
Sample Date		26-Sep-18	26-Sep-18	26-Sep-18	Canadah a Cadhaanaa 3	
Comments		Pond	Pond	Pond	Sensitive Sediment ³	Typical Sediment ³
PARAMETERS	Units		Analytical Results ¹			
Chlorinated Phenols						
Monochlorophenols	ug/g	< 0.05	< 0.05	< 0.05	n.s.	n.s.
Dichlorophenols	ug/g	< 0.05	< 0.05	< 0.05	n.s.	n.s.
Trichlorophenols	ug/g	< 0.05	< 0.05	< 0.05	n.s.	n.s.
Tetrachlorophenols	ug/g	< 0.05	< 0.05	< 0.05	n.s.	n.s.
Pentachlorophenol	ug/g	<0.02	< 0.02	< 0.02	0.4	0.8
Total Chlorophenols	ug/g	< 0.05	< 0.05	< 0.05	n.s.	n.s.

Notos:

- 1 Data excerpted from Exova analytical reports; units as indicated
- 2 BC Contaminated Sites Regulation (CSR) Schedule 3.4 Generic Numerical Sediment Standards, site-specific pathways as noted above
- 3 As per the BC CSR definitions
- n.s. = No applicable standard
- < = Less than the laboratory method detection limit

Sample ID SS18-01 SS18-02 SS18-03 CSR Schwel s.4 Matrix Sediment Sediment Sediment Sediment Sediment Freshwater Sediment Depth (in below surface grade) 0.0-0.4 0.0-0.4 0.0-0.4 0.0-0.4 26-Sep-18 Sersitive Sediment Typical Sediment Comments Pond Pond Pond Pond Sersitive Sediment Typical Sediment PRAMETERS Units Analytical Results¹ Sersitive Sediment¹ Typical Sediment³ Dioxins Vinit Analytical Results¹ Sersitive Sediment² Typical Sediment³ Dioxins Vinit Analytical Results¹ n.d. n.s. n.s. 1.3.1 ng/Kg 30 2.9 2.1 n.d. n.s.							
Depth (m below surface grade) 0.0.0.4 0.0.0.4 0.0.0.4 0.0.0.4 0.0.0.4 0.0.0.4 0.0.0.4 0.0.0.4 0.0.0.4 0.0.0.4 0.0.0.4 0.0.0.4 26-Sep-18 2	Sample ID		SS18-01	SS18-02	SS18-03	CSR Sch	edule 3.4
Depth (m below surface grade) 0.0.04 0.0.04 0.0.04 0.0.04 0.0.04 Dependence of the point	Matrix		Sediment	Sediment	Sediment	Frankuvata	r Cadimont
Comments Pond	Depth (m below surface grade)		0.0-0.4	0.0-0.4	0.0-0.4	riestiwate	Sediment
Comments Pond	Sample Date		26-Sep-18	26-Sep-18	26-Sep-18	Consitius Codiment ³	Tuninal Cadimant ³
Dioxins	Comments		Pond	Pond	Pond	sensitive searment	Typical sediment
2,37,8-TCDD ng/kg 2.1 n.d. n.d. n.s. n.s. n.s. Iotal TCDD ng/kg 30 2.9 2.1 n.s. n.s. n.s. 1,2,3,7,8-PeCDD ng/kg 32 2.6 n.d. n.s. n.s. n.s. Iotal PeCDD ng/kg 140 2.9 n.d. n.s. n.s. n.s. 1,2,3,4,7,8-HxCDD ng/kg 76 n.d. n.d. n.s. n.s. n.s. 1,2,3,6,7,8-HxCDD ng/kg 210 5.4 n.d. n.s. n.s. n.s. 1,2,3,6,7,8-HxCDD ng/kg 81 2.7 1.3 n.s. n.s. n.s. 10tal HxCDD ng/kg 1100 45 28 n.s. n.s. n.s. 1,2,3,4,6,7,8-HxCDD ng/kg 3800 140 41 n.s. n.s. n.s. 10tal HxCDD ng/kg 7200 350 89 n.s. n.s. n.s. 10tal HyCDD ng/kg 112 5.5 1.2 n.s. n.s. <td< td=""><td>PARAMETERS</td><td>Units</td><td></td><td>Analytical Results¹</td><td></td><td></td><td></td></td<>	PARAMETERS	Units		Analytical Results ¹			
Total TCDD ng/kg 30 2.9 2.1 n.s. n.s. 1,2,3,7,8-PeCDD ng/kg 32 2.6 n.d. n.s. n.s. Total PeCDD ng/kg 140 2.9 n.d. n.s. n.s. 1,2,3,4,7,8-HxCDD ng/kg 76 n.d. n.d. n.s. n.s. 1,2,3,6,7,8-HxCDD ng/kg 210 5.4 n.d. n.s. n.s. 1,2,3,6,7,8-HxCDD ng/kg 81 2.7 1.3 n.s. n.s. Total HxCDD ng/kg 81 2.7 1.3 n.s. n.s. 1,2,3,4,6,7,8-HxCDD ng/kg 3800 140 41 n.s. n.s. 1,2,3,4,6,7,8-HxCDD ng/kg 3800 140 41 n.s. n.s. 1,2,3,4,6,7,8-HxCDD ng/kg 7200 350 89 n.s. n.s. 1,2,3,4,6,7,8-HxCDD ng/kg 112 5.5 1.2 n.s. n.s. 1,2,3,4,6,7,	Dioxins						
1,2,3,7,8-PeCDD	2,3,7,8-TCDD	ng/kg	2.1	n.d.	n.d.	n.s.	n.s.
Total PeCDD	Total TCDD	ng/kg	30	2.9	2.1	n.s.	n.s.
1,2,3,4,7,8-HxCDD	1,2,3,7,8-PeCDD	ng/kg	32	2.6	n.d.	n.s.	n.s.
1,2,3,6,7,8-HxCDD ng/kg 210 5.4 n.d. n.s. n.s. 1,2,3,7,8,9-HxCDD ng/kg 81 2.7 1.3 n.s. n.s. Total HxCDD ng/kg 1100 45 28 n.s. n.s. 1,2,3,4,6,7,8-HpCDD ng/kg 3800 140 41 n.s. n.s. 1,2,3,4,6,7,8-HpCDD ng/kg 7200 350 89 n.s. n.s. OCDD ng/kg 11000 1300 320 n.s. n.s. Toxic Equivalency* ng/kg 112 5.5 1.2 n.s. n.s. Toxic Equivalency* ng/kg 0.1120 0.0055 0.001 n.s. n.s. Furans 2,3,7,8-TCDF ng/kg 4.2 n.d. n.d. n.s. n.s. 2,3,7,8-TCDF ng/kg 88 17 8.2 n.s. n.s. 1,2,3,7,8-PeCDF ng/kg 7.2 0.72 n.d. n.s. n.s. 2,3,4,7,8-PeCDF ng/kg 9.7 1.2 n.d. n.s. n.s. </td <td>Total PeCDD</td> <td>ng/kg</td> <td>140</td> <td>2.9</td> <td>n.d.</td> <td>n.s.</td> <td>n.s.</td>	Total PeCDD	ng/kg	140	2.9	n.d.	n.s.	n.s.
1,2,3,7,8,9-HxCDD	1,2,3,4,7,8-HxCDD	ng/kg	76	n.d.	n.d.	n.s.	n.s.
Total HXCDD ng/kg 1100 45 28 n.s. n.s. 1,2,3,4,6,7,8-HpCDD ng/kg 3800 140 41 n.s. n.s. Total HpCDD ng/kg 7200 350 89 n.s. n.s. OCDD ng/kg 11000 1300 320 n.s. n.s. Toxic Equivalency* ng/kg 112 5.5 1.2 n.s. n.s. Toxic Equivalency* ng/kg (ppb) 0.1120 0.0055 0.001 n.s. n.s. Furans 2,3,7,8-TCDF ng/kg 4.2 n.d. n.d. n.s. n.s. 2,3,7,8-TCDF ng/kg 4.2 n.d. n.d. n.s. n.s. Total TCDF ng/kg 88 17 8.2 n.s. n.s. 1,2,3,7,8-PeCDF ng/kg 7.2 0.72 n.d. n.s. n.s. 2,3,4,7,8-PeCDF ng/kg 9.7 1.2 n.d. n.s. n.s.	1,2,3,6,7,8-HxCDD	ng/kg	210	5.4	n.d.	n.s.	n.s.
1,2,3,4,6,7,8-HpCDD ng/kg 3800 140 41 n.s. n.s. Total HpCDD ng/kg 7200 350 89 n.s. n.s. OCDD ng/kg 11000 1300 320 n.s. n.s. Toxic Equivalency* ng/kg 112 5.5 1.2 n.s. n.s. Ins. n.s. n.s. n.s. Furans 2,3,7,8-TCDF ng/kg 4.2 n.d. n.d. n.s. n.s. 2,3,7,8-TCDF ng/kg 88 17 8.2 n.s. n.s. 1,2,3,7,8-PeCDF ng/kg 7.2 0.72 n.d. n.s. n.s. 2,3,4,7,8-PeCDF ng/kg 9.7 1.2 n.d. n.s. n.s.	1,2,3,7,8,9-HxCDD	ng/kg	81	2.7	1.3	n.s.	n.s.
Total HpCDD ng/kg 7200 350 89 n.s. n.s. OCDD ng/kg 11000 1300 320 n.s. n.s. Toxic Equivalency* ng/kg 112 5.5 1.2 n.s. n.s. ug/kg (ppb) 0.1120 0.0055 0.001 n.s. n.s. Furans 2,3,7,8-TCDF ng/kg 4.2 n.d. n.d. n.s. n.s. Total TCDF ng/kg 88 17 8.2 n.s. n.s. 1,2,3,7,8-PeCDF ng/kg 7.2 0.72 n.d. n.s. n.s. 2,3,4,7,8-PeCDF ng/kg 9.7 1.2 n.d. n.s. n.s.	Total HxCDD	ng/kg	1100	45	28	n.s.	n.s.
OCDD ng/kg 11000 1300 320 n.s. n.s. Toxic Equivalency* ng/kg 112 5.5 1.2 n.s. n.s. ug/kg (ppb) 0.1120 0.0055 0.001 n.s. n.s. Furans 2,3,7,8-TCDF ng/kg 4.2 n.d. n.d. n.s. n.s. Total TCDF ng/kg 88 17 8.2 n.s. n.s. n.s. 1,2,3,7,8-PeCDF ng/kg 7.2 0.72 n.d. n.s. n.s. 2,3,4,7,8-PeCDF ng/kg 9.7 1.2 n.d. n.s. n.s.	1,2,3,4,6,7,8-HpCDD	ng/kg	3800	140	41	n.s.	n.s.
Toxic Equivalency*		ng/kg	7200	350	89	n.s.	n.s.
Lug/kg (ppb) 0.1120 0.0055 0.001 n.s. n.s. Furans 2,3,7,8-TCDF ng/kg 4.2 n.d. n.d. n.s. n.s. Total TCDF ng/kg 88 17 8.2 n.s. n.s. 1,2,3,7,8-PeCDF ng/kg 7.2 0.72 n.d. n.s. n.s. 2,3,4,7,8-PeCDF ng/kg 9.7 1.2 n.d. n.s. n.s.	OCDD	ng/kg	11000	1300	320	n.s.	n.s.
Lug/kg (ppb) 0.1120 0.0055 0.001 n.s. n.s. Furans 2,3,7,8-TCDF ng/kg 4.2 n.d. n.d. n.s. n.s. Total TCDF ng/kg 88 17 8.2 n.s. n.s. 1,2,3,7,8-PeCDF ng/kg 7.2 0.72 n.d. n.s. n.s. 2,3,4,7,8-PeCDF ng/kg 9.7 1.2 n.d. n.s. n.s.							
Furans 2,3,7,8-TCDF ng/kg 4.2 n.d. n.d. n.s. n.s. Total TCDF ng/kg 88 17 8.2 n.s. n.s. 1,2,3,7,8-PeCDF ng/kg 7.2 0.72 n.d. n.s. n.s. 2,3,4,7,8-PeCDF ng/kg 9.7 1.2 n.d. n.s. n.s.	Toxic Equivalency*	ng/kg	112	5.5	1.2	n.s.	n.s.
2,3,7,8-TCDF ng/kg 4.2 n.d. n.d. n.s. n.s. Total TCDF ng/kg 88 17 8.2 n.s. n.s. 1,2,3,7,8-PeCDF ng/kg 7.2 0.72 n.d. n.s. n.s. 2,3,4,7,8-PeCDF ng/kg 9.7 1.2 n.d. n.s. n.s.		ug/kg (ppb)	0.1120	0.0055	0.001	n.s.	n.s.
Total TCDF ng/kg 88 17 8.2 n.s. n.s. 1,2,3,7,8-PeCDF ng/kg 7.2 0.72 n.d. n.s. n.s. 2,3,4,7,8-PeCDF ng/kg 9.7 1.2 n.d. n.s. n.s.	Furans						
1,2,3,7,8-PeCDF ng/kg 7.2 0.72 n.d. n.s. n.s. 2,3,4,7,8-PeCDF ng/kg 9.7 1.2 n.d. n.s. n.s.	2,3,7,8-TCDF	ng/kg	4.2	n.d.	n.d.	n.s.	n.s.
2,3,4,7,8-PeCDF ng/kg 9.7 1.2 n.d. n.s. n.s.	Total TCDF	ng/kg	88	17	8.2	n.s.	n.s.
	1,2,3,7,8-PeCDF	ng/kg	7.2	0.72	n.d.	n.s.	n.s.
Total PeCDF ng/kg 280 19 25 n.s. n.s.	2,3,4,7,8-PeCDF	ng/kg	9.7	1.2	n.d.	n.s.	n.s.
	Total PeCDF	ng/kg	280	19	25	n.s.	n.s.
1,2,3,4,7,8-HxCDF ng/kg 31 1.1 n.d. n.s. n.s.	1,2,3,4,7,8-HxCDF	ng/kg	31	1.1	n.d.	n.s.	n.s.
1,2,3,6,7,8-HxCDF ng/kg 30 1.9 0.94 n.s. n.s.	1,2,3,6,7,8-HxCDF	ng/kg	30	1.9	0.94	n.s.	n.s.
1,2,3,7,8,9-HxCDF ng/kg 14 n.d. n.d. n.s. n.s.	1,2,3,7,8,9-HxCDF	ng/kg	14	n.d.	n.d.	n.s.	n.s.
2,3,4,6,7,8-HxCDF ng/kg 54 2.6 0.78 n.s. n.s.	2,3,4,6,7,8-HxCDF	ng/kg	54	2.6	0.78	n.s.	n.s.
Total HxCDF ng/kg 870 32 14 n.s. n.s.	Total HxCDF	ng/kg	870	32	14	n.s.	n.s.
1,2,3,4,6,7,8-HpCDF ng/kg 830 27 6.1 n.s. n.s.	1,2,3,4,6,7,8-HpCDF	ng/kg	830	27	6.1	n.s.	n.s.
1,2,3,4,7,8,9-HpCDF ng/kg 95 2.4 0.8 n.s. n.s.	1,2,3,4,7,8,9-HpCDF	ng/kg	95	2.4	0.8	n.s.	n.s.
Total HpCDF ng/kg 3600 110 23 n.s. n.s.	Total HpCDF	ng/kg	3600	110	23	n.s.	n.s.
OCDF ng/kg 2000 91 18 n.s. n.s.	OCDF	ng/kg	2000	91	18	n.s.	n.s.
Toxic Equivalency* ng/kg 26 1.3 0.47 n.s. n.s.	Toxic Equivalency*	ng/kg	26	1.3	0.47	n.s.	n.s.
ug/kg (ppb) 0.026 0.001 0.0005 n.s. n.s.		ug/kg (ppb)	0.026	0.001	0.0005	n.s.	n.s.
Total Equivalency, polychlorinated dioxins ug/kg (ppb) Output Output		ug/kg (ppb)	<u>0.13840</u>	0.00678	0.00170	0.13**	0.26**

- 1 Data excerpted from Exova analytical reports; units as indicated
- 2 BC Contaminated Sites Regulation (CSR) Schedule 3.4 Generic Numerical Sediment Standards, site-specific pathways as noted above
- n.d. = Less than the laboratory method detection limit
- n.s. = No applicable standard
- ${}^* Calculated\ based\ on\ World\ Health\ Organization\ Toxic\ Equivalency\ System\ (WHO-TEQs)$
- ** = Standard has been converted to ug/kg to correspond with laboratory results

Table 5. Summary of Surface Water Analytical Results - Petroleum Hydrocarbons

Sample ID		SS18-01	SS18-02	SS18-03				
Matrix		Surface Water	Surface Water	Surface Water		CSR Sche	edule 3.2 ²	
Sample Date		26-Sep-18	26-Sep-18	26-Sep-18	Freshwater Aquatic Life	Irrigation	Livestock	Drinking Water
Comments		Pond	Pond	Pond	Lile			
PARAMETERS	Units		Analytical Results ¹					
Mono-Aromatic Hydrocarbons								
Benzene	ug/L	< 0.5	<0.5	< 0.5	400	n.s.	n.s.	5
Ethylbenzene	ug/L	< 0.5	<0.5	< 0.5	2,000	n.s.	n.s.	140
Methyl t-Butyl Ether	ug/L	< 0.5	<0.5	< 0.5	34,000	n.s.	11,000	95
Styrene	ug/L	< 0.5	<0.5	< 0.5	720	n.s.	n.s.	800
Toluene	ug/L	< 0.5	<0.5	< 0.5	5	n.s.	n.s.	60
Total Xylenes (m,p,o)	ug/L	< 0.5	<0.5	< 0.5	300	n.s.	n.s.	90
Volatile Petroleum Hydrocarbons								
VPHw(VHW _{6-10 minus BTEX})	ug/L	<50	<50	<50	1,500	n.s.	n.s.	n.s.
VHw6-10	ug/L	<50	<50	<50	15,000	15,000	15,000	15,000
Extractable Hydrocarbons								
EPH _{w10-19}	ug/L	<200	<200	<200	5,000	5,000	5,000	5,000
LEPHw	ug/L	<200	<200	<200	500	n.s.	n.s.	n.s.
EPH _{w19-32}	ug/L	<200	<200	<200	n.s.	n.s.	n.s.	n.s.
HEPHw	ug/L	<200	<200	<200	n.s.	n.s.	n.s.	n.s.
Polycyclic Aromatic Hydrocarbons								
Acenaphthene	ug/L	< 0.1	<0.1	< 0.1	60	n.s.	n.s.	250
Acenaphthylene	ug/L	<0.1	<0.1	< 0.1	n.s.	n.s.	n.s.	n.s.
Acridine	ug/L	< 0.05	< 0.05	<0.05	0.5	n.s.	n.s.	n.s.
Anthracene	ug/L	< 0.1	<0.1	< 0.1	1	n.s.	n.s.	1,000
Benzo(a)anthracene	ug/L	<0.01	< 0.01	<0.01	1	n.s.	n.s.	0.07
Benzo(a)pyrene	ug/L	<0.01	< 0.01	<0.01	0.1	n.s.	n.s.	0.01
Benzo(b+j)fluoranthene	ug/L	< 0.02	< 0.02	<0.02	n.s.	n.s.	n.s.	n.s.
Benzo(g,h,i)perylene	ug/L	< 0.1	<0.1	<0.1	n.s.	n.s.	n.s.	n.s.
Benzo(k)fluoranthene	ug/L	< 0.02	< 0.02	<0.02	n.s.	n.s.	n.s.	n.s.
Chrysene	ug/L	<0.1	<0.1	< 0.1	1	n.s.	n.s.	7
Dibenz(a,h)anthracene	ug/L	<0.01	< 0.01	<0.01	n.s.	n.s.	n.s.	0.01
Fluoranthene	ug/L	< 0.1	<0.1	< 0.1	2	n.s.	n.s.	150
Fluorene	ug/L	<0.1	<0.1	<0.1	120	n.s.	n.s.	150
Indeno(1,2,3-c,d)pyrene	ug/L	< 0.1	<0.1	< 0.1	n.s.	n.s.	n.s.	n.s.
Naphthalene	ug/L	<0.1	<0.1	<0.1	10	n.s.	n.s.	80
Phenanthrene	ug/L	<0.1	<0.1	<0.1	3	n.s.	n.s.	n.s.
Pyrene	ug/L	< 0.02	< 0.02	<0.02	0.2	n.s.	n.s.	100
Quinoline	ug/L	<0.01	< 0.01	<0.01	34	n.s.	n.s.	0.05
Notes:								

 $\textbf{Bold}, \underline{underlined}, \text{ and shaded grey indicates concentration exceeds lowest of the applicable standards}$

^{1 -} Data excerpted from Exova analytical reports; units as indicated

^{2 -} BC Contaminated Sites Regulation (CSR) Schedule 3.2 Generic Numerical Water Standards, site-specific pathways as noted above

n.s. = No applicable standard

< = Less than the laboratory method detection limit

Sample ID	SS18-01	SS18-02	SS18-02A	SS18-03				
						CSR Sch	nedule 3.2 ²	
Matrix	Surface Water	Surface Water	Surface Water	Surface Water				
Sample Date	26-Sep-18	26-Sep-18	26-Sep-18	26-Sep-18	Freshwater Aquatic	Irrigation	Livestock	Drinking Water
Comments	Pond	Pond	Pond	Pond	Life	ingation	Livestock	blinking water
PARAMETERS Unit	5	Analytica	al Results ¹					
Hardness as CaCO ₃ mg/	110	116	118	109	n.s.	n.s.	n.s.	n.s.
Total Metals								
Aluminum ug/	27	32	230	28	n.s.	5,000	5,000	9,500
Antimony ug/	0.19	0.20	0.22	0.19	90	n.s.	n.s.	6
Arsenic ug/	0.8	0.8	1.0	0.8	50	100	25	10
Barium ug/	. 34	37	38	34	10,000	n.s.	n.s.	1,000
Beryllium ug/	< 0.05	< 0.05	< 0.05	< 0.05	1.5	100	100	8
Bismuth ug/	<0.1	<0.1	<0.1	< 0.1	n.s.	n.s.	n.s.	n.s.
Boron ug/	44	45	47	40	12,000	500 to 6,000 ³	5,000	5,000
Cadmium ug/	<0.01	<0.01	<0.01	< 0.01	0.5 to 4 ^H	5	80	5
Chromium ug/	< 0.05	< 0.05	0.46	< 0.05	10 (CrIV)/90 (CrIII)	8 (CrIV)/5 (CrIII)	50 (CrIV)/50 (CrIII)	50 (CrIV)/6,000 (CrIII)
Cobalt ug/	<u>1.7</u>	<u>1.9</u>	<u>2.0</u>	<u>1.7</u>	40	50	1,000	1
Copper ug/	0.6	0.6	1.2	0.7	20 to 90 ^H	200	300	1,500
Iron ug/	2000	2200	2500	2300	n.s.	5,000	n.s.	6,500
Lead ug/	0.03	0.02	0.07	0.03	40 to 160 ^H	200	100	10
Lithium ug/	< 0.5	<0.5	<0.5	< 0.5	n.s.	2,500	5,000	8
Manganese ug/	2700	3100	3100	2700	n.s.	200	n.s.	1,500
Molybdenum ug/	0.03	0.02	0.04	0.02	10,000	10 to 30 ⁴	50	250
Nickel ug/	0.8	0.8	1.1	0.7	250 to 1,500 ^H	200	1,000	80
Selenium ug/	<0.2	<0.2	<0.2	< 0.2	20	20 ⁵ or 50 ⁶	30	10
Silver ug/	<0.01	<0.01	< 0.01	<0.01	0.5 to 15 ^H	n.s.	n.s.	20
Strontium ug/	- 66	70	71	64	n.s.	n.s.	n.s.	2,500
Tellurium ug/	<0.05	< 0.05	< 0.05	< 0.05	n.s.	n.s.	n.s.	n.s.
Thallium ug/	<0.01	<0.01	< 0.01	< 0.01	3	n.s.	n.s.	n.s.
Thorium ug/	<0.05	< 0.05	< 0.05	< 0.05	n.s.	n.s.	n.s.	n.s.
Tin ug/	<0.1	<0.1	<0.1	<0.1	n.s.	n.s.	n.s.	2,500
Titanium ug/	1.9	1.7	18	1.7	1,000	n.s.	n.s.	n.s.
Uranium ug/	<0.01	<0.01	< 0.01	<0.01	85	10	200	20
Vanadium ug/	0.17	0.12	1.0	0.1	n.s.	100	100	20
Zinc ug/	5.0	5.1	5.4	5.1	75 to 2,400 ^H	1,000 to 5,000 ^H	2,000	3,000
Zirconium ug/	<0.1	<0.1	0.1	<0.1	n.s.	n.s.	n.s.	n.s.

- 1 Data excerpted from Exova analytical reports; units as indicated
- 2 BC Contaminated Sites Regulation (CSR) Schedule 3.2 Generic Numerical Water Standards, site-specific pathways as noted above
- 3 The standard for boron is crop specific with the lowest of the range noted above
- ${\it 4-The standard for molybdenum \, varies \, with \, site-specific \, factors. \,\, The \, lowest \, of \, the \, range \, is \, noted \, above.}$
- 5 The standard for selenium is for continuous applications on crops
- 6 The standard for selenium is for intermittent application on crops
- n.s. = No applicable standard
- H = Standard is hardness dependant and is specific to each sample with the range noted above
- = Parameter not analyzed
- < = Less than the laboratory method detection limit

 $\textbf{Bold}, \underline{underlined}, \text{ and shaded grey indicates concentration exceeds lowest of the applicable standards}$

Table 7. Summary of Surface Water Analytical Results - Routine Parameters

Sample ID	SS18-01	SS18-02	SS18-02A	SS18-03	CSR Schedule 3.2 ²			
Matrix	Surface Water	Surface Water	Surface Water	Surface Water				
Sample Date	43369	43369	43369	43,369.00	Freshwater Aquatic	Irrigation	Livestock	Drinking Water
Comments	Pond	Pond	Pond	Pond	Life	illigation	Livestock	blinking water
PARAMETERS Ur	its	Analytic	cal Results ¹					
Routine Parameters								
Calcium mg	/L 37	39	40	36	n.s.	n.s.	1,000	n.s.
Magnesium mg	/L 4.3	4.5	4.6	4.3	n.s.	n.s.	n.s.	n.s.
Potassium mg	/L 1.0	1.1	1.1	1	n.s.	n.s.	n.s.	n.s.
Silicon mg	/L 5.6	6.0	6.2	5.6	n.s.	n.s.	n.s.	n.s.
Sodium mg	/L 2.1	2.2	2.1	2	n.s.	n.s.	n.s.	200
Sulphur mg	/L 1.80	1.90	1.9	1.7	n.s.	n.s.	n.s.	n.s.
Hardness as CaCO₃ mg	/L 110	116	118	109	n.s.	n.s.	n.s.	n.s.

^{1 -} Data excerpted from Exova analytical reports; units as indicated

^{2 -} BC Contaminated Sites Regulation (CSR) Schedule 3.2 Generic Numerical Water Standards, site-specific pathways as noted above

n.s. = No applicable standard

 $^{^{\}star}$ = Standard has been converted to mg/L to correspond with laboratory results

< = Less than the laboratory method detection limit

Sample ID	SS18-02	SS18-02A	
Matrix	Surface Water	Surface Water	Relative Percent Difference (RPD) 1
Sample Date	26-Sep-18	26-Sep-18	Ziiioronioo (iii Z)
PARAMETERS	Analytic	al Results	
Hardness as CaCO ₃	116	118	1.71
Aluminum	32	230	151.15
Antimony	0.2	0.22	9.52
Arsenic	0.8	1	22.22
Barium	37	38	2.67
Beryllium	<0.05	< 0.05	*
Bismuth	<0.1	<0.1	*
Boron	45	47	4.35
Cadmium	<0.01	<0.01	*
Chromium	< 0.05	0.46	*
Cobalt	1.9	2.0	5.13
Copper	0.6	1.2	*
Iron	2200	2500	12.77
Lead	0.02	0.07	*
Lithium	<0.5	<0.5	*
Manganese	3100	3100	0.00
Molybdenum	0.02	0.04	*
Nickel	0.8	1.1	*
Selenium	<0.2	<0.2	*
Silver	<0.01	< 0.01	*
Strontium	70	71	1.42
Tellurium	<0.05	< 0.05	*
Thallium	<0.01	<0.01	*
Thorium	<0.05	< 0.05	*
Tin	<0.1	<0.1	*
Titanium	1.7	18	165.48
Uranium	<0.01	< 0.01	*
Vanadium	0.12	1	*
Zinc	5.1	5.4	5.71
Zirconium	<0.1	0.1	*

 $\textbf{Bold}, \underline{underlined}, and shaded indicates concentration exceeds lowest of the applicable standards$

^{1 -} RPD values below 20% are generally considered acceptable sampling and analytical precision as per the BC Field Sampling Manual

^{*} RPD not calculated as both values did not exceed 5 times the laboratory method detection limit, or the parameter did not have a method detection limit listed

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Report Number: 2327037

Report Transmission Cover Page

Bill To: TerraWest Environmental Inc. Project ID: 2018447.01 Lot ID: 1300986

206, 2800 Bryn Maur Road Project Name: DCMM18-01 Control Number:

Victoria, BC, CanadaProject Location:Port AlberniDate Received:Sep 27, 2018V9B 3T4LSD:Date Reported:Oct 22, 2018

Attn: Accounts Payable P.O.:

Sampled By: Derek Nickel Proj. Acct. code: Company: TerraWest

Contact	Company	Address		
Accounts Payable	TerraWest Environmental Inc.	206, 2800 Bryn Maur Road		
		Victoria, BC V9B 3T4		
		Phone: (866) 500-1553	Fax:	(250) 389-1554
		Email: ap@terrawest.ca		
Delivery	<u>Format</u>	<u>Deliverables</u>		
Email - Single Report	PDF	Invoice		
Derek Nickel	TerraWest Environmental Inc.	3148 F Barons Road		
		Nanaimo, BC V9T 4B5		
		Phone: (866) 500-1553	Fax:	
		Email: dnickel@terrawest.ca		
Delivery	<u>Format</u>	<u>Deliverables</u>		
Email - Merge Reports	PDF	COC / Test Report		
Email - Single Report	PDF	COA		
Email - Single Report	Standard Crosstab	Test Report		
Erich Bell	TerraWest Environmental Inc.	3148 Unit G Barons Road		
		Nanaimo, BC V9T 4B5		
		Phone: (866) 500-1553	Fax:	
		Email: ebell@terrawest.ca		
<u>Delivery</u>	<u>Format</u>	<u>Deliverables</u>		
Email - Multiple Reports By	/ Lot PDF	COC / Test Report		
Email - Multiple Reports By	/ Lot PDF	COR		
Email - Multiple Reports By	Lot Standard Crosstab	Test Report		
Email - Single Report	PDF	COC / COA		

Notes To Clients:

- Sep 28, 2018 Reduction of analytical volume was necessary for metals analysis to bring results within the analytical range for samples. Detection limits are adjusted accordingly.
- Oct 22, 2018 Dioxin and furan analysis was performed by a subcontract laboratory. See attached 7 page report PR182812.

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Analytical Report

Bill To: TerraWest Environmental Inc.

206, 2800 Bryn Maur Road

Victoria, BC, Canada

V9B 3T4

Attn: Accounts Payable Sampled By: Derek Nickel

Company: TerraWest Project ID: 2018447.01 Project Name: Project Location:

Proj. Acct. code:

LSD:

P.O.:

DCMM18-01

Port Alberni

Control Number:

Date Reported: Oct 22, 2018 Report Number:

Date Received:

2327037

Lot ID:

1300986

Sep 27, 2018

Reference Number 1300986-1 1300986-2 1300986-3 Sample Date Sep 26, 2018 Sep 26, 2018 Sep 26, 2018 Sample Time NA NA NA

Sample Location

Sample Description SS18-01

SS18-02

SS18-03

Matrix Soil Soil Soil Nominal Detection Analyte Units Results Results Results **Metals Strong Acid Digestion** Dried, sieve -325 Dried, sieve -325 Dried, sieve -325 Prep 27000 25000 27000 Aluminum Strong Acid Extractable 0.5 µg/g Antimony Strong Acid Extractable μg/g 5.1 5.6 5.7 1.5 Arsenic Strong Acid Extractable μg/g 19 12 11 0.35 Barium Strong Acid Extractable 110 130 160 0.2 μg/g Beryllium Strong Acid Extractable 0.40 0.44 0.47 0.01 µg/g Cadmium 0.55 0.3 0.05 Strong Acid Extractable 0.3 μg/g Calcium Strong Acid Extractable μg/g 7300 11000 9700 0.5 Chromium Strong Acid Extractable 90 90 96 0.1 μg/g Cobalt Strong Acid Extractable 24 27 29 μg/g 0.1 94 99 96 Copper Strong Acid Extractable 0.1 µg/g 44000 42000 44000 Iron Strong Acid Extractable 0.02 μg/g I ead Strong Acid Extractable µg/g 15 8.4 4 0.5 Lithium Strong Acid Extractable 13 14 16 0.15 μg/g 6900 8000 8300 Magnesium Strong Acid Extractable 1 μg/g Strong Acid Extractable 420 660 460 0.05 Manganese μg/g Mercury Strong Acid Extractable 0.81 0.34 0.33 0.003 µg/g Strong Acid Extractable 0.4 < 0.10 < 0.10 0.1 Molybdenum μg/g Nickel Strong Acid Extractable μg/g 42 42 45 0.25 Phosphorus Strong Acid Extractable 1400 580 510 0.5 μg/g Potassium Strong Acid Extractable 680 760 760 2 μg/g 2 0.5 Selenium Strong Acid Extractable 0.6 µg/g 1 570 430 390 0.25 Silicon Strong Acid Extractable μg/g Silver Strong Acid Extractable 0.81 0.4 μg/g 1.5 0.5 Sodium Strong Acid Extractable μg/g 140 170 150 5 0.05 Strontium Strong Acid Extractable 19 23 25 μg/g Thallium Strong Acid Extractable < 0.5 <0.5 <0.5 0.5 μg/g Tin Strong Acid Extractable µg/g 2 1 8.0 0.5 Titanium Strong Acid Extractable 1000 1300 1100 0.1 μg/g Vanadium Strong Acid Extractable μg/g 150 150 160 0.2 7inc Strong Acid Extractable 280 130 97 0.05 μg/g Zirconium Strong Acid Extractable μg/g 5.8 6.2 5.5 0.1 Sieve 230 mesh Prep Done Done Done Soil Acidity 1:2 Soil:Water 5.1 5.7 6.0 0.5 pН pΗ Mono-Aromatic Hydrocarbons - Soil < 0.02 0.02 Benzene Dry Weight µg/g < 0.02 < 0.02 Toluene Dry Weight < 0.05 < 0.05 < 0.05 0.05 µg/g Ethylbenzene Dry Weight < 0.05 < 0.05 < 0.05 0.05 µg/g

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Analytical Report

Bill To: TerraWest Environmental Inc.

206, 2800 Bryn Maur Road

Victoria, BC, Canada

V9B 3T4
Attn: Accounts Payable

Sampled By: Derek Nickel

Company: TerraWest

Project ID: 2018447.01 Lot ID: **1300986**

DCMM18-01

Port Alberni

Control Number:

Date Received: Sep 27, 2018

Date Reported: Oct 22, 2018

Report Number: 2327037

 Reference Number
 1300986-1
 1300986-2
 1300986-3

 Sample Date
 Sep 26, 2018
 Sep 26, 2018
 Sep 26, 2018

 Sample Time
 NA
 NA
 NA

Sample Location

Project Name:

LSD:

P.O.:

Project Location:

Proj. Acct. code:

Sample Description SS18-03 SS18-01 SS18-02 Soil Soil Matrix Soil Nominal Detection Units Results Results Analyte Results Limit Mono-Aromatic Hydrocarbons - Soil - Continued < 0.05 Total Xylenes (m,p,o) Dry Weight µg/g < 0.05 < 0.05 0.05 Styrene Dry Weight < 0.05 < 0.05 < 0.05 0.05 µg/g Methyl t-Butyl Ether Dry Weight µg/g < 0.05 < 0.05 < 0.05 0.05 Toluene-d8 Surrogate % 100.68 114.82 101.10 80-120 Dibromofluoromethane Surrogate % 107.56 102.86 110.44 80-120 4-Bromofluorobenzene % 105.84 109.52 101.70 80-120 Surrogate Methanol Field Preservation Yes Yes Yes Volatile Petroleum Hydrocarbons - Soil VHs6-10 Dry Weight µg/g <50 <50 <50 50 VPHs (VHs6-10 minus <50 <50 <50 50 Dry Weight µg/g BTEX) **Field Preservation** Methanol Field Preservation Yes Yes Yes **Extractable Petroleum Hydrocarbons - Soil** EPHs10-19 Dry Weight 51 25 <20 20 µg/g EPHs19-32 Dry Weight 1380 348 156 20 µg/g **LEPHs** Dry Weight 49 25 <20 20 µg/g Dry Weight **HEPHs** 1380 348 156 20 µg/g 2-Methylnonane Surrogate % 86 96 88 60-140 Soil % Moisture Moisture Soil % Moisture % 85.2 80.50 78.6 0.1 Polycyclic Aromatic Hydrocarbons - Soil 2-Methylnaphthalene Dry Weight < 0.03 < 0.03 < 0.03 0.03 µg/g Acenaphthene Dry Weight < 0.03 < 0.03 < 0.03 0.03 μg/g Acenaphthylene Dry Weight 0.22 < 0.03 < 0.03 0.03 μg/g Anthracene Dry Weight < 0.03 < 0.03 < 0.03 0.03 µg/g < 0.03 0.03 Benzo(a)anthracene Dry Weight 0.08 0.06 µg/g Dry Weight < 0.03 < 0.03 < 0.03 0.03 Benzo(a)pyrene µg/g Dry Weight Benzo(b+j)fluoranthene < 0.06 < 0.06 < 0.06 0.06 µg/g Dry Weight < 0.03 < 0.03 < 0.03 0.03 Benzo(g,h,i)perylene µg/g Benzo(k)fluoranthene Dry Weight < 0.03 < 0.03 < 0.03 0.03 µg/g Chrysene Dry Weight µg/g < 0.03 < 0.03 < 0.03 0.03 Dibenzo(a,h)anthracene < 0.03 < 0.03 0.03 Dry Weight µg/g < 0.03 Fluoranthene Dry Weight 0.30 0.07 0.07 0.03 μg/g Fluorene Dry Weight < 0.03 < 0.03 < 0.03 0.03 µg/g Dry Weight < 0.03 < 0.03 < 0.03 0.03 Indeno(1,2,3-c,d)pyrene μg/g Naphthalene Dry Weight 0.63 < 0.03 < 0.03 0.03 µg/g 0.06 Phenanthrene Dry Weight µg/g 0.44 0.10 0.03 Pyrene Dry Weight µg/g 0.28 < 0.03 < 0.03 0.03

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Analytical Report

Total Chlorophenols

2,4,6-Tribromophenol

Bill To: TerraWest Environmental Inc.

206, 2800 Bryn Maur Road

Dry Weight

PCP - Surrogate

Chlorinated Phenols - Soil - Surrogate Recovery

Victoria, BC, Canada V9B 3T4

Attn: Accounts Payable

Sampled By: Derek Nickel

Company: TerraWest

Project ID: 2018447.01
Project Name: DCMM18-01

Project Location: Port Alberni

LSD: P.O.:

Proj. Acct. code:

mg/kg

%

Lot ID: 1300986

< 0.05

48

0.05

50-140

Control Number:

Date Received: Sep 27, 2018
Date Reported: Oct 22, 2018

Report Number: 2327037

		Reference Number	1300986-1	1300986-2	1300986-3	
		Sample Date	Sep 26, 2018	Sep 26, 2018	Sep 26, 2018	
		Sample Time	NA	NA	NA	
		Sample Location				
		Sample Description	SS18-01	SS18-02	SS18-03	
		Matrix	Soil	Soil	Soil	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
PAH - Soil - Surrogate R	Recovery					
2-Fluorobiphenyl	PAH - Surrogate	%	113.89	106.80	99.34	50-130
Naphthalene-d8	PAH - Surrogate	%	95.81	94.76	94.17	50-130
p-Terphenyl-d14	PAH - Surrogate	%	99.26	107.12	109.66	60-130
Quinoline-d7	PAH - Surrogate	%	84.98	89.76	94.41	50-130
Chlorinated Phenols - S	Soil					
Monochlorophenols	Dry Weight	mg/kg	< 0.05	< 0.05	< 0.05	0.05
Dichlorophenols	Dry Weight	mg/kg	< 0.05	< 0.05	< 0.05	0.05
Trichlorophenols	Dry Weight	mg/kg	< 0.05	< 0.05	< 0.05	0.05
Tetrachlorophenols	Dry Weight	mg/kg	< 0.05	< 0.05	< 0.05	0.05
Pentachlorophenol	Dry Weight	mg/kg	<0.02	<0.02	<0.02	0.02

< 0.05

44

< 0.05

49

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Analytical Report

Bill To: TerraWest Environmental Inc.

206, 2800 Bryn Maur Road

Victoria, BC, Canada

V9B 3T4

Sampled By: Derek Nickel TerraWest Company:

Attn: Accounts Payable Project ID: 2018447.01 Project Name: DCMM18-01

Port Alberni Project Location: LSD:

P.O.: Proj. Acct. code:

1300986 Lot ID:

Control Number:

Date Received: Sep 27, 2018 Date Reported: Oct 22, 2018

Report Number: 2327037

Reference Number 1300986-4 1300986-5 1300986-6 Sample Date Sep 26, 2018 Sep 26, 2018 Sep 26, 2018 Sample Time NA NA NA Sample Location **Sample Description** SW18-01 SW18-02 SW18-02A Water Water Water Matrix Nominal Detection Units Analyte Results Results Results Limit **Routine Water** mg CaCO3/L 110 116 Hardness Total 118 1 **Trace Metals Total** 27 32 230 Aluminum Total μg/L 1 Antimony Total μg/L 0.19 0.20 0.22 0.02 Arsenic Total µg/L 8.0 8.0 1.0 0.1 Barium Total 34 37 38 0.1 µg/L Beryllium Total μg/L < 0.05 < 0.05 < 0.05 0.05 **Bismuth** Total < 0.1 < 0.1 < 0.1 0.1 µg/L Boron Total µg/L 44 45 47 2 < 0.01 < 0.01 0.01 Cadmium Total < 0.01 μg/L Total < 0.05 < 0.05 0.46 0.05 Chromium μg/L Cobalt Total µg/L 1.7 1.9 2.0 0.02 μg/L Copper Total 0.6 0.6 1.2 0.2 Iron Total μg/L 2000 2200 2500 2 Lead Total 0.03 0.02 0.07 0.01 μg/L Lithium Total µg/L < 0.5 < 0.5 < 0.5 0.5 3100 Total 2700 3100 1 Manganese μg/L Molybdenum Total 0.03 0.02 0.04 0.02 µg/L 0.8 0.2 Nickel Total µg/L 0.8 1.1 Selenium Total < 0.2 <0.2 < 0.2 0.2 µg/L Silver Total < 0.01 < 0.01 < 0.01 0.01 μg/L Strontium 70 71 Total μg/L 66 0.1 Tellurium Total µg/L < 0.05 < 0.05 < 0.05 0.05 Thallium Total μg/L < 0.01 < 0.01 < 0.01 0.01 Thorium < 0.05 0.05 Total μg/L < 0.05 < 0.05 Tin Total μg/L < 0.1 <0.1 < 0.1 0.1 **Titanium** Total µg/L 1.9 1.7 18 0.1 Total < 0.01 < 0.01 < 0.01 0.01 Uranium µg/L Vanadium Total μg/L 0.17 0.12 1.0 0.05 Zinc Total 5.0 5.1 5.4 0.5 µg/L Zirconium Total < 0.1 <0.1 0.1 µg/L 0.1 Calcium 37000 39000 40000 10 Total μg/L Total 4300 4500 4600 20 Magnesium μg/L Potassium Total µg/L 1000 1100 1100 40 Silicon Total μg/L 5600 6000 6200 5 Sodium 2100 100 Total μg/L 2200 2100 Sulfur Total 1800 1900 1900 20 μg/L

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Analytical Report

Bill To: TerraWest Environmental Inc.

206, 2800 Bryn Maur Road

Victoria, BC, Canada V9B 3T4

Attn: Accounts Payable

Sampled By: Derek Nickel

Company: TerraWest

 Project ID:
 2018447.01
 Lot ID:
 1300986

 Project Name:
 DCMM18-01
 Control Number:

Project Name: DCMM18-01 Control Number:
Project Location: Port Alberni Date Received:

Port Alberni Date Received: Sep 27, 2018
Date Reported: Oct 22, 2018
Report Number: 2327037

Proj. Acct. code:

LSD:

P.O.:

		Reference Number	1300986-4	1300986-5	1300986-7	
		Sample Date	Sep 26, 2018	Sep 26, 2018	Sep 26, 2018	
		Sample Time	NA	NA	NA	
		Sample Location				
		Sample Description	SW18-01	SW18-02	SW18-03	
		Matrix	Water	Water	Water	
Analyte		Units	Results	Results	Results	Nominal Detection Limit
Mono-Aromatic Hydrocar	bons - Water					
Benzene		μg/L	<0.5	<0.5	<0.5	0.5
Ethylbenzene		μg/L	<0.5	<0.5	<0.5	0.5
Methyl t-Butyl Ether		μg/L	<0.5	<0.5	<0.5	0.5
Styrene		μg/L	<0.5	<0.5	<0.5	0.5
Toluene		μg/L	<0.5	<0.5	<0.5	0.5
Total Xylenes (m,p,o)		μg/L	<0.5	<0.5	<0.5	0.5
Dibromofluoromethane	Surrogate	%	97.24	105.90	92.86	80-120
Toluene-d8	Surrogate	%	109.50	116.52	111.00	80-120
4-Bromofluorobenzene	Surrogate	%	112.04	116.90	106.02	80-120
Volatile Petroleum Hydro	carbons - Water					
VPHw (VHw6-10 minus		μg/L	<50	<50	<50	50
BTEX)						
VHw6-10		μg/L	<50	<50	<50	50
Extractable Petroleum Hy	drocarbons - Wate	r				
2-Methylnonane	Surrogate	%	130	110	120	60-140
EPHw10-19		μg/L	<200	<200	<200	200
EPHw19-32		μg/L	<200	<200	<200	200
LEPHw		μg/L	<200	<200	<200	200
HEPHw		μg/L	<200	<200	<200	200
Polycyclic Aromatic Hydr	rocarbons - Water					
Acenaphthene		μg/L	<0.1	<0.1	<0.1	0.1
Acenaphthylene		μg/L	<0.1	<0.1	<0.1	0.1
Acridine		μg/L	< 0.05	< 0.05	< 0.05	0.05
Anthracene		μg/L	<0.1	<0.1	<0.1	0.1
Benzo(a)anthracene		μg/L	<0.01	<0.01	<0.01	0.01
Benzo(a)pyrene		μg/L	<0.01	<0.01	<0.01	0.01
Benzo(b+j)fluoranthene		μg/L	< 0.02	<0.02	<0.02	0.02
Benzo(g,h,i)perylene		μg/L	<0.1	<0.1	<0.1	0.1
Benzo(k)fluoranthene		μg/L	< 0.02	<0.02	< 0.02	0.02
Chrysene		μg/L	<0.1	<0.1	<0.1	0.1
Dibenzo(a,h)anthracene		μg/L	<0.01	<0.01	<0.01	0.01
Fluoranthene		μg/L	<0.1	<0.1	<0.1	0.1
Fluorene		μg/L	<0.1	<0.1	<0.1	0.1
Indeno(1,2,3-c,d)pyrene		μg/L	<0.1	<0.1	<0.1	0.1
Naphthalene		μg/L	<0.1	<0.1	<0.1	0.1
Phenanthrene		μg/L	<0.1	<0.1	<0.1	0.1
Pyrene		μg/L	<0.02	<0.02	<0.02	0.02
Quinoline		μg/L	<0.01	<0.01	<0.01	0.01
		r-3'		.3.0 .		

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Analytical Report

Bill To: TerraWest Environmental Inc.

206, 2800 Bryn Maur Road

Victoria, BC, Canada

V9B 3T4

Attn: Accounts Payable

Sampled By: Derek Nickel

Project ID:

Project Name:

Project Location: LSD: P.O.:

Proj. Acct. code:

Lot ID: 1300986

Control Number:

Date Received: Sep 27, 2018 Date Reported: Oct 22, 2018

Report Number: 2327037

Company: TerraWest 1300986-4 1300986-5 Reference Number 1300986-7 Sample Date Sep 26, 2018 Sep 26, 2018 Sep 26, 2018 Sample Time NA NA NA **Sample Location Sample Description** SW18-01 SW18-02 SW18-03 Matrix Water Water Water Nominal Detection Limit Units Analyte Results Results Results PAH - Water - Surrogate Recovery 2-Fluorobiphenyl PAH - Surrogate % 74.55 66.43 60.85 50-130 p-Terphenyl-d14 PAH - Surrogate % 92.81 67.35 65.99 60-130 Naphthalene-d8 % PAH - Surrogate 90.45 88.80 84.46 50-130 Quinoline-d7 PAH - Surrogate % 88.54 69.80 66.71 50-130

2018447.01

DCMM18-01

Port Alberni

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Analytical Report

Bill To: TerraWest Environmental Inc.

206, 2800 Bryn Maur Road

Victoria, BC, Canada V9B 3T4

Attn: Accounts Payable

Sampled By: Derek Nickel

Company: TerraWest

Project ID: 2018447.01 Project Name: DCMM18-01

Project Location: Port Alberni

Date Received: Sep 27, 2018 Date Reported: Oct 22, 2018

Control Number:

Lot ID: 1300986

Report Number: 2327037

Reference Number Sample Date

Proj. Acct. code:

LSD:

P.O.:

Sep 26, 2018 Sample Time

NA

1300986-7

Sample Location

Sample Description SW18-03

> Matrix Water

Analyte		Units	Results	Results	Results	Nominal Detection Limit
Routine Water						
Hardness	Total	mg CaCO3/L	109			1
Trace Metals Total						
Aluminum	Total	μg/L	28			1
Antimony	Total	μg/L	0.19			0.02
Arsenic	Total	μg/L	0.8			0.1
Barium	Total	μg/L	34			0.1
Beryllium	Total	μg/L	< 0.05			0.05
Bismuth	Total	μg/L	<0.1			0.1
Boron	Total	μg/L	40			2
Cadmium	Total	μg/L	<0.01			0.01
Chromium	Total	μg/L	< 0.05			0.05
Cobalt	Total	μg/L	1.7			0.02
Copper	Total	μg/L	0.7			0.2
Iron	Total	μg/L	2300			2
Lead	Total	μg/L	0.03			0.01
Lithium	Total	μg/L	<0.5			0.5
Manganese	Total	μg/L	2700			1
Molybdenum	Total	μg/L	0.02			0.02
Nickel	Total	μg/L	0.7			0.2
Selenium	Total	μg/L	<0.2			0.2
Silver	Total	μg/L	<0.01			0.01
Strontium	Total	μg/L	64			0.1
Tellurium	Total	μg/L	< 0.05			0.05
Thallium	Total	μg/L	<0.01			0.01
Thorium	Total	μg/L	< 0.05			0.05
Tin	Total	μg/L	<0.1			0.1
Titanium	Total	μg/L	1.7			0.1
Uranium	Total	μg/L	<0.01			0.01
Vanadium	Total	μg/L	0.10			0.05
Zinc	Total	μg/L	5.1			0.5
Zirconium	Total	μg/L	<0.1			0.1
Calcium	Total	μg/L	36000			10
Magnesium	Total	μg/L	4300			20
Potassium	Total	μg/L	1000			40
Silicon	Total	μg/L	5600			5
Sodium	Total	μg/L	2000			100
Sulfur	Total	μg/L	1700			20

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Analytical Report

Bill To: TerraWest Environmental Inc.

206, 2800 Bryn Maur Road

Victoria, BC, Canada

V9B 3T4

Attn: Accounts Payable Sampled By: Derek Nickel

Company: TerraWest

Project ID: 2018447.01

Project Name: DCMM18-01 Port Alberni

Project Location: LSD:

Proj. Acct. code:

P.O.:

Lot ID: 1300986

Control Number:

Date Received: Sep 27, 2018 Date Reported: Oct 22, 2018

Report Number: 2327037

Approved by:

Mathieu Simoneau **Operations Manager**

Mathier

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Project Name:

LSD:

P.O.:

Project Location:

Proj. Acct. code:

Measured

Port Alberni

Passed QC

Quality Control

Blanks

Bill To: TerraWest Environmental Inc.

206, 2800 Bryn Maur Road

Units

Victoria, BC, Canada V9B 3T4

Attn: Accounts Payable

Sampled By: Derek Nickel

Company: TerraWest

Chlorinated Phenols - Soil

Project ID: 2018447.01 Lot ID: **1300986**

Lower Limit

DCMM18-01 Control Number:

Date Received: Sep 27, 2018
Date Reported: Oct 22, 2018

Report Number: 2327037

Upper Limit

				Opper Limit	
2-Chlorophenol	ng/mL	0	-0.08	0.08	yes
3-Chlorophenol	ng/mL	0	-0.08	0.08	yes
4-Chlorophenol	ng/mL	0	-0.08	0.08	yes
4-Chloro-3-methylphenol	ng/mL	0	-0.08	0.08	yes
2,6-Dichlorophenol	ng/mL	0	-0.08	0.08	yes
2,3-Dichlorophenol	ng/mL	0	-0.08	0.08	yes
2,4 & 2,5-Dichlorophenol	ng/mL	0	-0.08	0.08	yes
3,4-Dichlorophenol	ng/mL	0	-0.08	0.08	yes
3,5-Dichlorophenol	ng/mL	0	-0.08	0.08	yes
2,3,4-Trichlorophenol	ng/mL	0	-0.08	0.08	yes
2,3,5-Trichlorophenol	ng/mL	0	-0.08	0.08	yes
2,3,6-Trichlorophenol	ng/mL	0	-0.08	0.08	yes
2,4,5-Trichlorophenol	ng/mL	0	-0.08	0.08	yes
2,4,6-Trichlorophenol	ng	0	-0.08	0.08	yes
3,4,5-Trichlorophenol	ng/mL	0	-0.08	0.08	yes
2,3,4,5-Tetrachlorophenol	ng/mL	0	-0.08	0.08	yes
2,3,4,6-Tetrachlorophenol	ng/mL	0	-0.08	0.08	yes
2,3,5,6-Tetrachlorophenol	ng/mL	0	-0.08	0.08	yes
Monochlorophenols	ng/mL	0	-0.08	0.08	yes
Dichlorophenols	ng/mL	0	-0.08	0.08	yes
Trichlorophenols	ng/mL	0	-0.08	0.08	yes
Tetrachlorophenols	ng/mL	0	-0.08	0.08	yes
Pentachlorophenol	ng/mL	0	-0.08	0.08	yes
Date Acquired: Septemb	per 28, 2018				
Date Acquired: Septemb	oer 28, 2018 Units	% Recovery	Lower Limit	Upper Limit	Passed QC
		% Recovery 95.70	Lower Limit 80	Upper Limit 120	Passed QC yes
alibration Check	Units				
calibration Check 2-Chlorophenol	Units ng/mL	95.70	80	120	yes
2-Chlorophenol 3-Chlorophenol	Units ng/mL ng/mL	95.70 85.27	80 80	120 120	yes yes
2-Chlorophenol 3-Chlorophenol 4-Chlorophenol	Units ng/mL ng/mL ng/mL	95.70 85.27 96.03	80 80 80	120 120 120	yes yes yes
2-Chlorophenol 3-Chlorophenol 4-Chlorophenol 4-Chloro-3-methylphenol 2,6-Dichlorophenol	Units ng/mL ng/mL ng/mL ng/mL	95.70 85.27 96.03 85.60	80 80 80 80	120 120 120 120	yes yes yes yes yes
2-Chlorophenol 3-Chlorophenol 4-Chlorophenol 4-Chloro-3-methylphenol 2,6-Dichlorophenol 2,3-Dichlorophenol	Units ng/mL ng/mL ng/mL ng/mL	95.70 85.27 96.03 85.60 95.10	80 80 80 80	120 120 120 120 120	yes yes yes yes yes
2-Chlorophenol 3-Chlorophenol 4-Chlorophenol 4-Chloro-3-methylphenol 2,6-Dichlorophenol 2,3-Dichlorophenol 2,4 & 2,5-Dichlorophenol	Units ng/mL ng/mL ng/mL ng/mL ng/mL ng/mL	95.70 85.27 96.03 85.60 95.10 92.77	80 80 80 80 80	120 120 120 120 120 120	yes yes yes yes yes yes
2-Chlorophenol 3-Chlorophenol 4-Chlorophenol 4-Chloro-3-methylphenol 2,6-Dichlorophenol 2,3-Dichlorophenol	Units ng/mL ng/mL ng/mL ng/mL ng/mL ng/mL ng/mL	95.70 85.27 96.03 85.60 95.10 92.77 94.73	80 80 80 80 80 80	120 120 120 120 120 120 120	yes yes yes yes yes yes yes yes yes
2-Chlorophenol 3-Chlorophenol 4-Chloro-3-methylphenol 2,6-Dichlorophenol 2,3-Dichlorophenol 2,4 & 2,5-Dichlorophenol 3,4-Dichlorophenol 3,5-Dichlorophenol	Units ng/mL ng/mL ng/mL ng/mL ng/mL ng/mL ng/mL ng/mL ng/mL	95.70 85.27 96.03 85.60 95.10 92.77 94.73 80.31	80 80 80 80 80 80 80	120 120 120 120 120 120 120 120	yes
alibration Check 2-Chlorophenol 3-Chlorophenol 4-Chlorophenol 4-Chloro-3-methylphenol 2,6-Dichlorophenol 2,3-Dichlorophenol 2,4 & 2,5-Dichlorophenol 3,4-Dichlorophenol	Units ng/mL	95.70 85.27 96.03 85.60 95.10 92.77 94.73 80.31 93.09 86.20	80 80 80 80 80 80 80	120 120 120 120 120 120 120 120 120	yes
alibration Check 2-Chlorophenol 3-Chlorophenol 4-Chloro-3-methylphenol 2,6-Dichlorophenol 2,3-Dichlorophenol 2,4 & 2,5-Dichlorophenol 3,4-Dichlorophenol 3,5-Dichlorophenol 2,3,4-Trichlorophenol 2,3,5-Trichlorophenol	Units ng/mL	95.70 85.27 96.03 85.60 95.10 92.77 94.73 80.31 93.09 86.20 95.30	80 80 80 80 80 80 80 80	120 120 120 120 120 120 120 120 120 120	yes
alibration Check 2-Chlorophenol 3-Chlorophenol 4-Chlorophenol 4-Chloro-3-methylphenol 2,6-Dichlorophenol 2,3-Dichlorophenol 2,4 & 2,5-Dichlorophenol 3,4-Dichlorophenol 3,5-Dichlorophenol 2,3,4-Trichlorophenol 2,3,6-Trichlorophenol	Units ng/mL	95.70 85.27 96.03 85.60 95.10 92.77 94.73 80.31 93.09 86.20	80 80 80 80 80 80 80 80	120 120 120 120 120 120 120 120 120 120	yes
alibration Check 2-Chlorophenol 3-Chlorophenol 4-Chlorophenol 4-Chloro-3-methylphenol 2,6-Dichlorophenol 2,3-Dichlorophenol 3,4-Dichlorophenol 3,5-Dichlorophenol 2,3,4-Trichlorophenol 2,3,6-Trichlorophenol 2,4,5-Trichlorophenol	Units ng/mL	95.70 85.27 96.03 85.60 95.10 92.77 94.73 80.31 93.09 86.20 95.30 99.50 82.90	80 80 80 80 80 80 80 80 80 80	120 120 120 120 120 120 120 120 120 120	yes
alibration Check 2-Chlorophenol 3-Chlorophenol 4-Chlorophenol 4-Chloro-3-methylphenol 2,6-Dichlorophenol 2,3-Dichlorophenol 3,4-Dichlorophenol 3,5-Dichlorophenol 2,3,4-Trichlorophenol 2,3,5-Trichlorophenol 2,3,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	Units ng/mL	95.70 85.27 96.03 85.60 95.10 92.77 94.73 80.31 93.09 86.20 95.30 99.50 82.90 95.10	80 80 80 80 80 80 80 80 80	120 120 120 120 120 120 120 120 120 120	yes
2-Chlorophenol 3-Chlorophenol 4-Chlorophenol 4-Chloro-3-methylphenol 2,6-Dichlorophenol 2,3-Dichlorophenol 2,4 & 2,5-Dichlorophenol 3,4-Dichlorophenol 3,5-Dichlorophenol 2,3,4-Trichlorophenol 2,3,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 3,4,5-Trichlorophenol	Units ng/mL	95.70 85.27 96.03 85.60 95.10 92.77 94.73 80.31 93.09 86.20 95.30 99.50 82.90 95.10 82.60	80 80 80 80 80 80 80 80 80 80 80	120 120 120 120 120 120 120 120 120 120	yes
alibration Check 2-Chlorophenol 3-Chlorophenol 4-Chloro-3-methylphenol 2,6-Dichlorophenol 2,3-Dichlorophenol 2,4 & 2,5-Dichlorophenol 3,4-Dichlorophenol 3,5-Dichlorophenol 2,3,4-Trichlorophenol 2,3,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4,6-Trichlorophenol 2,3,4,5-Trichlorophenol	Units ng/mL ng/mL	95.70 85.27 96.03 85.60 95.10 92.77 94.73 80.31 93.09 86.20 95.30 99.50 82.90 95.10 82.60 90.20	80 80 80 80 80 80 80 80 80 80 80 80	120 120 120 120 120 120 120 120	yes
2-Chlorophenol 3-Chlorophenol 4-Chlorophenol 4-Chloro-3-methylphenol 2,6-Dichlorophenol 2,3-Dichlorophenol 2,4 & 2,5-Dichlorophenol 3,4-Dichlorophenol 3,5-Dichlorophenol 2,3,4-Trichlorophenol 2,3,6-Trichlorophenol 2,4,6-Trichlorophenol 2,4,6-Trichlorophenol 3,4,5-Trichlorophenol	Units ng/mL	95.70 85.27 96.03 85.60 95.10 92.77 94.73 80.31 93.09 86.20 95.30 99.50 82.90 95.10 82.60	80 80 80 80 80 80 80 80 80 80 80	120 120 120 120 120 120 120 120 120 120	yes

Passed QC

Quality Control

Bill To: TerraWest Environmental Inc. Project ID: 2018447.01 Lot ID: 1300986

Measured

206, 2800 Bryn Maur Road Project Name: DCMM18-01 Control Number:

Victoria, BC, CanadaProject Location:Port AlberniDate Received:Sep 27, 2018V9B 3T4LSD:Date Reported:Oct 22, 2018

Attn: Accounts Payable P.O.: Report Number: 2327037

Sampled By: Derek Nickel Proj. Acct. code:

Units

Company: TerraWest

Chlorinated Phenols - Soil - Continued

Chlorinated Phenols - Soil - Surrogate

Recovery

Blanks	Units	Measured	Lower Limit	Upper Limit	Passed QC
2,4,6-Tribromophenol	%	107.844	50	140	yes

Lower Limit

Upper Limit

Date Acquired: September 28, 2018

Extractable Petroleum Hydrocarbons -

Soil Blanks

EPHs10-19	μg/mL	0	-20	20		yes
EPHs19-32	μg/mL	2.90397	-20	20		yes
Date Acquired:	September 26, 2018					
Calibration Check	Units	% Recovery	Lower Limit	Upper Limit		Passed QC
EPHs10-19	μg/mL	102.04	85	115		yes
EPHs19-32	μg/mL	100.64	85	115		yes
Date Acquired:	September 26, 2018					
Certified Reference	e Material Units	Measured	Target	Lower Limit	Upper Limit	Passed QC
Certified Reference EPHs10-19	e Material Units µg/g	Measured 2470	Target 2576	Lower Limit 1803	Upper Limit 3348	Passed QC yes
			•		• • • • • • • • • • • • • • • • • • • •	
EPHs10-19	μg/g	2470	2576	1803	3348	yes
EPHs10-19 EPHs19-32	ha\a ha\a ha\a	2470	2576	1803	3348	yes
EPHs10-19 EPHs19-32 Date Acquired:	μg/g μg/g September 26, 2018	2470 3470	2576 3743	1803 2620	3348 4866	yes yes

Date Acquired: September 26, 2018

Extractable Petroleum Hydrocarbons -

11-:4-

Water

Blanks	Units	Measured	Lower Limit	Upper Limit	Passed QC
EPHw10-19	μg/mL	0.86	-5.010	5.010	yes
EPHw19-32	μg/mL	0	-5.010	5.010	yes
Date Acquired:	September 28, 2018				
Calibration Check	Units	% Recovery	Lower Limit	Upper Limit	Passed QC
C20	μg/mL	93.82	85	115	yes
Date Acquired:	September 28, 2018				
EPHw10-19	μg/mL	103.84	70	130	yes
EPHw19-32	μg/mL	102.17	70	130	yes
Date Acquired:	September 28, 2018				

Metals Strong Acid Digestion

Blanks	Units	Measured	Lower Limit	Upper Limit	Passed QC
Aluminum	mg/L	0	-0.010	0.010	yes
Antimony	mg/L	0.000863457	-0.030	0.030	yes
Arsenic	mg/L	0.00665642	-0.007	0.007	yes
Barium	mg/L	0.000228096	-0.004	0.004	yes

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Lot ID: 1300986

Quality Control

Bill To: TerraWest Environmental Inc. Project ID: 2018447.01

Proj. Acct. code:

206, 2800 Bryn Maur Road Project Name: DCMM18-01 Control Number:

Victoria, BC, CanadaProject Location:Port AlberniDate Received:Sep 27, 2018V9B 3T4LSD:Date Reported:Oct 22, 2018

Attn: Accounts Payable P.O.: Report Number: 2327037

Sampled By: Derek Nickel Company: TerraWest

			inued	id Digestion - Conti	Metals Strong Ac
Passed QC	Upper Limit	Lower Limit	Measured	Units	Blanks
yes	0.000	-0.000	0.000144222	mg/L	Beryllium
yes	0.001	-0.001	6.98787e-005	mg/L	Cadmium
yes	0.010	-0.010	0	mg/L	Calcium
yes	0.002	-0.002	0.000679504	mg/L	Chromium
yes	0.002	-0.002	-0.000378373	mg/L	Cobalt
yes	0.002	-0.002	-0.00142536	mg/L	Copper
yes	0.004	-0.004	0	mg/L	Iron
yes	0.010	-0.010	0.00276329	mg/L	Lead
yes	0.003	-0.003	0.00234696	mg/L	Lithium
yes	0.020	-0.020	0.0191327	mg/L	Magnesium
yes	0.001	-0.001	0	mg/L	Manganese
yes	0.030	-0.030	-0.019	μg/L	Mercury
yes	0.002	-0.002	-0.00054053	mg/L	Molybdenum
yes	0.005	-0.005	-0.000928137	mg/L	Nickel
yes	0.010	-0.010	0	mg/L	Phosphorus
yes	0.039	-0.039	0	mg/L	Potassium
yes	0.010	-0.010	0.00829735	mg/L	Selenium
yes	0.008	-0.008	0	mg/L	Silver
yes	0.099	-0.099	0.0692587	mg/L	Sodium
yes	0.000	-0.000	-8.3387e-005	mg/L	Strontium
yes	0.010	-0.010	-0.00512229	mg/L	Thallium
yes	0.010	-0.010	-0.00180173	mg/L	Tin
yes	0.002	-0.002	5.34582e-005	mg/L	Titanium
yes	0.004	-0.004	0.000430753	mg/L	Vanadium
yes	0.001	-0.001	0	mg/L	Zinc
yes	0.002	-0.002	0.000365435	mg/L	Zirconium
				October 01, 2018	Date Acquired:
Passed QC	Upper Limit	Lower Limit	% Recovery	Units	Calibration Check
yes	110	90	93.88	mg/L	Aluminum
yes	110	90	94.78	mg/L	Antimony
yes	110	90	96.64	mg/L	Arsenic
yes	110	90	98.26	mg/L	Barium
yes	110	90	98.55	mg/L	Beryllium
yes	110	90	97.13	mg/L	Cadmium
yes	110	90	98.10	mg/L	Calcium
yes	110	90	97.96	mg/L	Chromium
yes	110	90	103.95	mg/L	Cobalt
yes	110	90	97.93	mg/L	Copper
yes	110	90	98.10	mg/L	Iron
yes	110	90	99.74	mg/L	Lead
yes	110	90	94.19	mg/L	Lithium
yes	110	90	96.23	mg/L	Magnesium
yes	110	90	101.74	mg/L	Manganese
· · · · · · · · · · · · · · · · · · ·	110	90	95.80	mg/L	Molybdenum
yes					

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Quality Control

Bill To: TerraWest Environmental Inc. Project ID: 2018447.01 Lot ID: 1300986

206, 2800 Bryn Maur Road Project Name: DCMM18-01 Control Number:

Victoria, BC, CanadaProject Location:Port AlberniDate Received:Sep 27, 2018V9B 3T4LSD:Date Reported:Oct 22, 2018

Attn: Accounts Payable P.O.: Report Number: 2327037 bled By: Derek Nickel Proj. Acct. code:

Sampled By: Derek Nickel Proj.
Company: TerraWest

alibration Check	Units	% Recovery	Lower Limit	Upper Limit	Passed
Phosphorus	mg/L	97.00	90	110	
Potassium	mg/L	93.70	90	110	
Selenium	mg/L	96.52	90	110	
Silicon	mg/L	94.48	90	110	
Silver	mg/L	98.67	90	110	
Sodium	mg/L	96.47	90	110	
Thallium	mg/L	95.90	90	110	
Tin	mg/L	97.53	90	110	
Titanium	mg/L	97.43	90	110	
Vanadium	mg/L	97.92	90	110	
Zinc	mg/L	97.53	90	110	
Zirconium	mg/L	95.27	90	110	
Date Acquired:	October 01, 2018	00.2.			
·		04.00	00	440	
Aluminum	mg/L	91.22	90	110	
Antimony	mg/L	104.45	90	110	
Arsenic	mg/L	95.17	90	110	
Barium	mg/L	97.55	90	110	
Beryllium	mg/L	97.49	90	110	
Cadmium	mg/L	97.93	90	110	
Calcium	mg/L	97.42	90	110	
Chromium	mg/L	98.27	90	110	
Cobalt	mg/L	104.16	90	110	
Copper	mg/L	107.42	90	110	
Iron	mg/L	102.97	90	110	
Lead	mg/L	107.40	90	110	
Lithium	mg/L	94.71	90	110	
Magnesium	mg/L	95.75	90	110	
Manganese	mg/L	101.48	90	110	
Mercury	μg/L "	102.83	90	110	
Molybdenum	mg/L	97.51	90	110	
Nickel	mg/L	102.26	90	110	
Phosphorus	mg/L	92.86	90	110	
Potassium	mg/L	91.32	90	110	
Selenium	mg/L	95.70	90	110	
Silicon	mg/L	96.00	90	110	
Silver	mg/L	96.25	90	110	
Sodium	mg/L	101.17	90	110	
Strontium	mg/L	96.84	90	110	
Thallium	mg/L	94.59	90	110	
Tin	mg/L	96.66	90	110	
Titanium	mg/L	96.02	90	110	
Vanadium	mg/L	97.61	90	110	
Zinc	mg/L	95.31	90	110	
Zirconium	mg/L	92.00	90	110	

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Quality Control

Bill To: TerraWest Environmental Inc.

206, 2800 Bryn Maur Road Victoria, BC, Canada Project Name: DCMM18-01 Project Location: Port Alberni

2018447.01

Project ID:

Lot ID: 1300986

Control Number:

Project Location: Port Alberni Date Received: Sep 27, 2018 LSD: Date Reported: Oct 22, 2018 P.O.: Report Number: 2327037

Sampled By: Derek Nickel Proj. Acct. code:

Company: TerraWest

V9B 3T4

Attn: Accounts Payable

Client Sample Replicate	es Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed Q
Aluminum	μg/g	25000	24000	30	2.500	ye
Antimony	μg/g	5.1	5.9	30	3.000	ye
Arsenic	μg/g	19	19	30	1.750	ye
Barium	μg/g	110	110	30	1.000	ye
Beryllium	μg/g	0.40	0.39	30	0.050	ye
Cadmium	μg/g	0.55	0.53	30	0.250	ye
Calcium	μg/g	7300	7300	30	2.500	y
Chromium	μg/g	90	88	30	0.500	y
Cobalt	μg/g	24	24	30	0.500	y
Copper	μg/g	94	93	30	0.500	у
Iron	μg/g	44000	42000	30	0.100	y.
Lead	μg/g	15	16	30	2.500	у
Lithium	μg/g	13	13	30	0.750	у
Magnesium	μg/g	6900	6800	30	5.000	у
Manganese	μg/g	420	410	30	2.500	у
Mercury	μg/g	0.81	0.76	30	0.500	у
Molybdenum	μg/g	0.4	0.4	30	0.500	У
Nickel	μg/g	42	42	30	1.250	У
Phosphorus	μg/g	1400	1400	30	2.500	У
Potassium	μg/g	680	680	30	10.000	У
Selenium	μg/g	2	1	30	2.500	У
Silver	μg/g	1.5	2.6	30	2.000	У
Sodium	µg/g	140	140	30	25.000	у
Strontium	µg/g	19	19	30	0.250	, ,
Thallium	µg/g	<0.5	<0.5	30	2.500	y
Tin	μg/g	2	2	30	2.500	
Vanadium		150	140	30	1.000	У
Zinc	μg/g	280	280	30	0.250	У
Zirconium	μg/g	5.8	5.9	30	0.500	}
	μg/g ober 01, 2018	5.0	5.9	30	0.500	У
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed (
Aluminum	μg/g	11000	9373.000	15511.000		у
Antimony	μg/g	<1	0.040	2.080		у
Arsenic	μg/g	4.6	2.940	5.520		у
Barium	μg/g	160	139.210	174.790		У
Beryllium	μg/g	0.55	0.405	0.603		у
Cadmium	μg/g	0.2	0.101	0.341		у
Calcium	μg/g	15000	12998.000	18122.000		У
Chromium	μg/g	27	11.360	37.040		у
Cobalt	μg/g	8.3	4.970	8.870		У
Copper	μg/g	16	12.330	17.430		У
Iron	μg/g	15000	12770.000	20366.000		У
Lead	μg/g	9.4	5.500	11.320		у
Lithium	μg/g	12	8.700	16.500		y
Magnesium	μg/g	3000	2480.000	3500.000		у

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Quality Control

Bill To: TerraWest Environmental Inc. Project ID: 2018447.01 Lot ID: 1300986

206, 2800 Bryn Maur Road Project Name: DCMM18-01 Control Number:

Victoria, BC, Canada Project Location: Port Alberni Date Received: Sep 27, 2018
V9B 3T4 LSD: Date Reported: Oct 22, 2018
Attn: Accounts Payable P.O.: Report Number: 2327037

Sampled By: Derek Nickel Proj. Acct. code:

Company: TerraWest

_	id Digestion - Continu					
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC
Manganese	μg/g	390	266.500	425.500		yes
Mercury	μg/g	0.020	0.012	0.034		yes
Molybdenum	μg/g	0.57	0.252	0.828		yes
Nickel	μg/g	23	16.430	23.720		yes
Phosphorus	μg/g	620	489.000	693.000		yes
Potassium	μg/g	1600	1078.000	2056.000		yes
Silicon	μg/g	460	73.000	1255.000		yes
Sodium	μg/g	130	78.800	189.200		yes
Strontium	μg/g	73	59.580	83.220		yes
Tin	μg/g	0.5	0.104	0.938		yes
Titanium	μg/g	99	74.800	125.200		yes
Vanadium	μg/g	34	25.800	48.600		yes
Zinc	μg/g	62	46.370	66.830		yes
Zirconium	μg/g	4.9	4.196	5.324		yes
Date Acquired:	October 01, 2018					
Metals Total						
Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
Calcium	mg/L	0.00137947	-0.010	0.010		yes
Magnesium	mg/L	0.0148862	-0.020	0.020		yes
Potassium	mg/L	0	-0.040	0.040		yes
Silicon	mg/L	0.00329579	-0.005	0.005		yes
Sodium	mg/L	0.00675433	-0.099	0.099		yes
Date Acquired:	September 27, 2018					
Calibration Check	Units	% Recovery	Lower Limit	Upper Limit		Passed QC
Calcium	mg/L	100.74	90	110		yes
Magnesium	mg/L	99.51	90	110		yes
Potassium	mg/L	98.15	90	110		yes
Silicon	mg/L	95.23	90	110		yes
Sodium	mg/L	99.94	90	110		yes
Date Acquired:	September 27, 2018					
Calcium	mg/L	105.10	90	110		yes
Magnesium	mg/L	95.42	90	110		yes
Potassium	mg/L	97.51	90	110		yes
Silicon	mg/L	92.70	90	110		yes
Sodium	mg/L	94.60	90	110		yes
Date Acquired:	September 27, 2018					
Client Sample Repl	icates Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Calcium	mg/L	40	37	20	0.050	yes
Magnesium	mg/L	4.6	4.3	20	0.050	yes
Potassium	mg/L	1.1	1.0	20	0.100	yes
Silicon	mg/L	6.2	5.9	20	0.100	yes
Sodium	mg/L	2.1	2.0	20	0.100	yes
Date Acquired:	September 27, 2018					

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Lot ID: 1300986

Date Received: Sep 27, 2018

Date Reported: Oct 22, 2018

Report Number: 2327037

Control Number:

Quality Control

Bill To: TerraWest Environmental Inc.

206, 2800 Bryn Maur Road

Project Name: Victoria, BC, Canada Project Location:

Project ID:

2018447.01

DCMM18-01

Port Alberni

V9B 3T4 LSD: Attn: Accounts Payable P.O.:

Sampled By: Derek Nickel Proj. Acct. code:

Company: TerraWest

Jnits g g g g g g g g g g g g g	Measured 0 0 0 0 0 0 0 0 0 0 99.54 103.04 104.84	-0.02 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 80.000 79.990 85.000	Upper Limit 0.02 0.05 0.05 0.05 0.05 0.05 0.05 110.000 120.010		Passed QQ yes
9 9 9 9 9 9 9 6 6 6 6 27, 2018	0 0 0 0 0 0 0 99.54 103.04	-0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 80.000 79.990	0.05 0.05 0.05 0.05 0.05 0.05 110.000 120.010		ye ye ye ye ye ye
9 9 9 9 9 9 6 6 6 6 27, 2018	0 0 0 0 0 0 99.54 103.04	-0.05 -0.05 -0.05 -0.05 -0.05 -0.05 80.000 79.990	0.05 0.05 0.05 0.05 0.05 0.05 110.000 120.010		ye ye ye ye ye
9 9 9 9 9 6 6 6 27, 2018	0 0 0 0 0 99.54 103.04	-0.05 -0.05 -0.05 -0.05 -0.05 80.000 79.990	0.05 0.05 0.05 0.05 0.05 110.000 120.010		ye: ye: ye: ye:
9 9 9 9 6 6 6 6 27, 2018	0 0 0 0 99.54 103.04	-0.05 -0.05 -0.05 -0.05 80.000 79.990	0.05 0.05 0.05 0.05 110.000 120.010		ye: ye: ye: ye:
9 9 9 6 6 6 6 27, 2018 Jnits	0 0 0 99.54 103.04	-0.05 -0.05 -0.05 80.000 79.990	0.05 0.05 0.05 110.000 120.010		ye ye ye
9 9 6 6 6 6 27, 2018 Inits	0 0 99.54 103.04	-0.05 -0.05 80.000 79.990	0.05 0.05 110.000 120.010		ye ye
9 6 6 6 27, 2018 Jnits	0 99.54 103.04	-0.05 80.000 79.990	0.05 110.000 120.010		ye
6 6 6 6 27, 2018 Inits	99.54 103.04	80.000 79.990	110.000 120.010		•
6 6 27, 2018 Inits	103.04	79.990	120.010		ye
6 27, 2018 Inits					,
27, 2018 Inits	104.84	85.000	445 000		ye
Inits			115.000		ye
a	% Recovery	Lower Limit	Upper Limit		Passed Q0
g	115.40	80	120		ye
g	106.00	80	120		ye
g	119.20	80	120		ye
g	111.60	80	120		ye
g	111.00	80	120		ye
g	111.33	80	120		ye
g	112.80	80	120		ye
g	115.00	80	120		ye
6	99.50	80	120		ye
6	101.74	80	120		ye
6	98.48	80	120		ye
27, 2018					
g	115.00	75	125		ye
g	101.00	75	125		ye
g	120.00	75	125		ye
g	109.00	75	125		ye
g	95.50	75	125		ye
g	100.00	75	125		ye
g	114.00	75	125		ye
g	115.00	75	125		ye
6	98.80	85	115		ye
6	96.52	85	115		ye
6	99.24	85			ye
27, 2018					•
	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed Q0
					ye
					ye ye
ש' ש	~0.00	~0.00	20	U. 117	
	27, 2018 9 9 9 27, 2018 9 9 9	111.33 g 112.80 g 115.00 g 99.50 101.74 98.48 27, 2018 g 115.00 g 101.00 g 120.00 g 120.00 g 109.00 g 120.00 g 114.00 g 115.00 g 95.50 g 100.00 g 114.00 g 115.00 g 98.80 g 96.52 g 99.24 27, 2018 nits Replicate 1 g/g <0.02 g/g <0.05 g/g <0.05	111.33 80 12.80 80 112.80 80 115.00 80 99.50 80 101.74 80 98.48 80 27, 2018 115.00 75 101.00 75 101.00 75 109.00 75 109.00 75 109.00 75 109.00 75 109.00 75 109.00 75 109.00 75 109.00 75 109.00 75 109.00 75 109.00 75 109.00 75 109.00 75 109.00 75 109.00 75 109.00 75 109.00 75 115.00 75	111.33 80 120 120 131.30 80 120 131.30 80 120 131.30 80 120 131.30 80 120 140.00 80 120 150.00 80 120 170.00 80 120 170.00 80 120 170.00 80 120 170.00 80 120 170.00 80 120 170.00 75 125 170.00 75 12	111.33 80 120 99.50 80 120 99.50 80 120 99.50 80 120 98.48 80 120 98.48 80 120 92.7, 2018 99.50 75 125 99.50

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Quality Control

Bill To: TerraWest Environmental Inc.

206, 2800 Bryn Maur Road

Project ID: Project Name: Lot ID: 1300986

Victoria, BC, Canada

Project Name.

Project Location:

Control Number:

Location: Port Alberni

2018447.01

DCMM18-01

Date Received: Sep 27, 2018 Date Reported: Oct 22, 2018

Report Number: 2327037

Attn: Accounts Payable

V9B 3T4

P.O.:

LSD:

Sampled By: Derek Nickel

Nickel Proj. Acct. code:

Company: TerraWest

Mono-Aromatic Hydro	carbons - Soil -					
Continued						
Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Styrene	μg/g	<0.05	< 0.05	20	0.10	yes
Methyl t-Butyl Ether	μg/g	<0.05	< 0.05	20	0.10	yes
Date Acquired: Septer	mber 27, 2018					
Matrix Spike	Units	% Recovery	Lower Limit	Upper Limit		Passed QC
Benzene	μg/g	116	80	120		yes
Toluene	μg/g	116	80	120		yes
Ethylbenzene	μg/g	108	80	120		yes
o-Xylene	μg/g	102	81	121		yes
m,p-Xylene	μg/g	104	80	120		yes
Total Xylenes (m,p,o)	μg/g	103	80	120		yes
Styrene	μg/g	119	80	120		yes
Methyl t-Butyl Ether	μg/g	114	80	120		yes
Date Acquired: Septer	mber 27, 2018					
Mono-Aromatic Hydro	carbons - Water					
Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
Benzene	ng	0	-0.5	0.5		yes
Ethylbenzene	ng	0	-0.5	0.5		yes
Methyl t-Butyl Ether	ng	0	-0.5	0.5		yes
m,p-Xylene	ng	0	-0.5	0.5		yes
o-Xylene	ng	0	-0.5	0.5		yes
Styrene	ng	0	-0.5	0.5		yes
Toluene	ng	0	-0.5	0.5		yes
Total Xylenes (m,p,o)	ng	0	-0.5	0.5		yes
Dibromofluoromethane	%	107.34	74.990	115.010		yes
Toluene-d8	%	102.1	80.000	110.000		yes
4-Bromofluorobenzene	%	108.34	85.000	115.000		yes
Date Acquired: Septer	mber 27, 2018					
Calibration Check	Units	% Recovery	Lower Limit	Upper Limit		Passed QC
Benzene	ng	114.89	80	120		yes
Ethylbenzene	ng	118.60	80	120		yes
Methyl t-Butyl Ether	ng	114.54	80	120		yes
m,p-Xylene	ng	110.75	80	120		yes
o-Xylene	ng	111.03	80	120		yes
Styrene	ng	112.24	80	120		yes
Toluene	ng	105.62	80	120		yes
Total Xylenes (m,p,o)	ng	110.84	80	120		yes
Dibromofluoromethane	%	101.74	80	120		yes
Toluene-d8	%	99.50	80	120		yes
4-Bromofluorobenzene	%	98.48	80	120		yes
Date Acquired: Septer	mber 27, 2018					
Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Benzene	μg/L	<0.5	<0.5	20	2.5	yes

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Quality Control

Lot ID: 1300986 Bill To: TerraWest Environmental Inc. Project ID: 2018447.01

206, 2800 Bryn Maur Road Project Name: DCMM18-01 Control Number:

Victoria, BC, Canada Project Location: Port Alberni Date Received: Sep 27, 2018 V9B 3T4 LSD: Date Reported: Oct 22, 2018 Report Number: 2327037

Attn: Accounts Payable P.O.:

Sampled By: Derek Nickel Proj. Acct. code:

Company: TerraWest

Continued Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed Q0
Ethylbenzene	μg/L	<0.5	<0.5	20	2.5	ye
Methyl t-Butyl Ether	μg/L	<0.5	<0.5	20	2.5	ye ye
m,p-Xylene	μg/L	<0.5	<0.5	20	2.5	ye
o-Xylene	μg/L	<0.5	<0.5	20	2.5	ye
Styrene	μg/L	<0.5	<0.5	20	2.5	ye
Toluene	μg/L	<0.5	<0.5	20	2.5	ye
Total Xylenes (m,p,o	. •	<0.5	<0.5	20	2.5	ye
	eptember 27, 2018	10.0	10.0			, ,
Matrix Spike	Units	% Recovery	Lower Limit	Upper Limit		Passed Q
Benzene	μg/L	% Recovery 116	80	120		
Ethylbenzene	μg/L	108	80	120		ye
Methyl t-Butyl Ether	μg/L	113	80	120		ye ye
m,p-Xylene	μg/L	103	80	120		ye
o-Xylene	μg/L	103	80	120		ye
Styrene	μg/L	118	80	120		ye
Toluene	μg/L	115	80	120		ye
Total Xylenes (m,p,o	· -	102	80	120		ye
Date Acquired: S	,	102	00	120		, ,
PAH - Soil - Surrog Calibration Check 2-Fluorobiphenyl Naphthalene-d8 p-Terphenyl-d14	Units % % %	% Recovery 98.57 97.96 101.25	Lower Limit 80 80 80	Upper Limit 120 120 120		Passed Q ye ye ye
Date Acquired: S	eptember 26, 2018					
Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed Q
2-Fluorobiphenyl	%	63.52	70.04	20	0.150	ye
Naphthalene-d8	%	90.28	94.37	20	0.150	ye
p-Terphenyl-d14	%	71.22	71.29	20	0.150	ye
Date Acquired: S	eptember 26, 2018					
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed Q
2-Fluorobiphenyl	%	99.60	50.100	129.900		ye
Naphthalene-d8	%	99.63	50.100	129.900		ye
p-Terphenyl-d14	%	97.50	59.990	130.010		ye
Date Acquired: S	eptember 26, 2018					
PAH - Water - Surro	ogate Recovery					
Calibration Check	Units	% Recovery	Lower Limit	Upper Limit		Passed Q
2-Fluorobiphenyl	%	113.36	80	120		ye
p-Terphenyl-d14	%	98.91	80	120		ye
Maria India at a second	%	95.95	80	120		ye
Naphthalene-d8						
•	eptember 29, 2018					

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Lot ID: 1300986

Date Received: Sep 27, 2018

Date Reported: Oct 22, 2018

Report Number: 2327037

Control Number:

Quality Control

Bill To: TerraWest Environmental Inc.

206, 2800 Bryn Maur Road

Project Name: Victoria, BC, Canada Project Location:

Project ID:

2018447.01

DCMM18-01

Port Alberni

V9B 3T4 LSD: P.O.: Attn: Accounts Payable

Sampled By: Derek Nickel Proj. Acct. code:

Company: TerraWest

Fluoranthene

PAH - Water - Surrogate Recovery -

Continued	,					
Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
2-Fluorobiphenyl	%	82.23	74.94	20	0.150	yes
p-Terphenyl-d14	%	105.32	106.36	20	0.250	yes
Naphthalene-d8	%	89.71	88.20	20	0.250	yes
Date Acquired: Se	ptember 29, 2018					
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed QC
2-Fluorobiphenyl	%	82.23	50.100	129.900		yes
p-Terphenyl-d14	%	105.32	59.990	130.010		yes
Naphthalene-d8	%	89.71	50.100	129.900		yes
Date Acquired: Se	ptember 29, 2018					
Polycyclic Aromatic	Hydrocarbons - S	Soil				
Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
2-Methylnaphthalene	ng/mL	0	-0.030	0.030		yes
Acenaphthene	ng/mL	0	-0.030	0.030		yes
Acenaphthylene	ng/mL	0	-0.030	0.030		yes
Anthracene	ng/mL	0	-0.030	0.030		yes
Benzo(a)anthracene	ng/mL	0	-0.030	0.030		yes
Benzo(a)pyrene	ng/mL	0	-0.030	0.030		yes
Benzo(b)fluoranthene	ng/mL	0	-0.030	0.030		yes
Benzo(g,h,i)perylene	ng/mL	0	-0.030	0.030		yes
Benzo(k)fluoranthene	ng/mL	0	-0.030	0.030		yes
Chrysene	ng/mL	0	-0.030	0.030		yes
Dibenzo(a,h)anthracer	ne ng/mL	0	-0.030	0.030		yes
Fluoranthene	ng/mL	0	-0.030	0.030		yes
Fluorene	ng/mL	0	-0.030	0.030		yes
Indeno(1,2,3-c,d)pyrer	ne ng/mL	0	-0.030	0.030		yes
Naphthalene	ng/mL	0	-0.030	0.030		yes
Phenanthrene	ng/mL	0	-0.030	0.030		yes
Pyrene	ng/mL	0	-0.030	0.030		yes
Date Acquired: Se	ptember 26, 2018					
Calibration Check	Units	% Recovery	Lower Limit	Upper Limit		Passed QC
2-Methylnaphthalene	ng/mL	98.93	80	120		yes
Acenaphthene	ng/mL	99.59	80	120		yes
Acenaphthylene	ng/mL	97.22	80	120		yes
Anthracene	ng/mL	99.20	80	120		yes
Benzo(a)anthracene	ng/mL	98.13	80	120		yes
Benzo(a)pyrene	ng/mL	100.20	80	120		yes
Benzo(b)fluoranthene	ng/mL	98.89	80	120		yes
Benzo(g,h,i)perylene	ng/mL	97.05	80	120		yes
Benzo(j)fluoranthene	ng/mL	107.11	80	120		yes
Benzo(k)fluoranthene	ng/mL	97.29	80	120		yes
Dibenzo(a,h)anthracer	ne ng/mL	101.35	80	120		yes

97.75

80

120

yes

ng/mL

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Quality Control

Bill To: TerraWest Environmental Inc.

Project ID: 2018447.01 Project Name: DCMM18-01 Lot ID: 1300986

206, 2800 Bryn Maur Road Victoria, BC, Canada

Control Number:

V9B 3T4

Port Alberni Project Location: LSD:

Date Received: Sep 27, 2018 Date Reported: Oct 22, 2018

Attn: Accounts Payable

P.O.: Proj. Acct. code: Report Number: 2327037

Sampled By: Derek Nickel Company: TerraWest

Fluoranthene

Naphthalene

Phenanthrene

Date Acquired:

Indeno(1,2,3-c,d)pyrene

Fluorene

Pyrene

Company. Terravvest						
Polycyclic Aromatic Hy	drocarbons - Soil -					
Continued						
Calibration Check	Units	% Recovery	Lower Limit	Upper Limit		Passed Q
Fluorene	ng/mL	97.80	80	120		ye
Indeno(1,2,3-c,d)pyrene	ng/mL	97.94	80	120		ye
Naphthalene	ng/mL	98.80	80	120		ye
Phenanthrene	ng/mL	100.23	80	120		ye
Pyrene	ng/mL	99.07	80	120		ye
Date Acquired: Septen	nber 26, 2018					
Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed Q
2-Methylnaphthalene	μg/g	<0.03	<0.03	20	0.150	ye
Acenaphthene	μg/g	< 0.03	< 0.03	20	0.150	y€
Acenaphthylene	μg/g	< 0.03	< 0.03	20	0.150	ye
Anthracene	μg/g	< 0.03	< 0.03	20	0.150	ye
Benzo(a)anthracene	μg/g	< 0.03	< 0.03	20	0.150	ye
Benzo(a)pyrene	μg/g	< 0.03	< 0.03	20	0.150	ye
Benzo(b)fluoranthene	μg/g	< 0.03	< 0.03	20	0.150	ye
Benzo(g,h,i)perylene	μg/g	< 0.03	< 0.03	20	0.150	ye
Benzo(k)fluoranthene	μg/g	< 0.03	< 0.03	20	0.150	ye
Chrysene	μg/g	< 0.03	< 0.03	20	0.150	ye
Dibenzo(a,h)anthracene	μg/g	< 0.03	< 0.03	20	0.150	ye
Fluoranthene	μg/g	< 0.03	< 0.03	20	0.150	ye
Fluorene	μg/g	< 0.03	< 0.03	20	0.150	ye
Indeno(1,2,3-c,d)pyrene	μg/g	< 0.03	< 0.03	20	0.150	ye
Naphthalene	μg/g	< 0.03	< 0.03	20	0.150	ye
Phenanthrene	μg/g	< 0.03	< 0.03	20	0.150	ye
Pyrene	μg/g	< 0.03	< 0.03	20	0.150	ye
Date Acquired: Septen	nber 26, 2018					
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed Q
2-Methylnaphthalene	μg/g	95.85	50.010	129.990		ye
Acenaphthene	μg/g	95.53	50.010	129.990		y€
Acenaphthylene	μg/g	89.70	50.010	129.990		ye
Anthracene	μg/g	88.19	59.990	130.010		ye
Benzo(a)anthracene	μg/g	90.62	59.990	130.010		ye
Benzo(a)pyrene	μg/g	89.42	59.990	130.010		ye
Benzo(b)fluoranthene	μg/g	83.13	59.990	130.010		ye
Benzo(g,h,i)perylene	μg/g	87.88	59.990	130.010		ye
Benzo(k)fluoranthene	μg/g	88.57	59.990	130.010		ye
Chrysene	μg/g	100.22	59.990	130.010		ye
Dibenzo(a,h)anthracene	μg/g	88.79	59.990	130.010		ye

90.51

91.91

85.23

98.43

94.37

91.50

59.990

50.010

59.990

50.010

59.990

59.990

130.010

129.990

130.010

129.990

130.010

130.010

yes

yes

yes

yes

yes

yes

Terms and Conditions: https://www.exova.com/media/1232/exova-canada-inc-standard-conditions-of-contract-short-form.pdf

μg/g

μg/g

μg/g

μg/g

μg/g

μg/g

September 26, 2018

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Passed QC

Quality Control

Blanks

Bill To: TerraWest Environmental Inc. Project ID: 2018447.01 Lot ID: 1300986

206, 2800 Bryn Maur Road Project Name: DCMM18-01 Control Number:

Measured

Victoria, BC, Canada Project Location: Port Alberni Date Received: Sep 27, 2018
V9B 3T4 LSD: Date Reported: Oct 22, 2018
Attn: Accounts Payable P.O.: Report Number: 2327037

Lower Limit

Upper Limit

Sampled By: Derek Nickel Proj. Acct. code:

Units

Company: TerraWest

Polycyclic Aromatic Hydrocarbons - Soil - Continued

Polycyclic Aromatic Hydrocarbons - Water

Diamino	Office	Micasarca	LOWG! LITTLE	Oppor Limit		. assca QO
Acenaphthene	ng/mL	0	-0.099	0.099		yes
Acenaphthylene	ng/mL	0	-0.099	0.099		yes
Acridine	ng/mL	0	-0.050	0.050		yes
Anthracene	ng/mL	0	-0.099	0.099		yes
Benzo(a)anthracene	ng/mL	0	-0.009	0.009		yes
Benzo(a)pyrene	ng/mL	0	-0.009	0.009		yes
Benzo(b)fluoranthene	ng/mL	0	-0.009	0.009		yes
Benzo(g,h,i)perylene	ng/mL	0	-0.099	0.099		yes
Benzo(k)fluoranthene	ng/mL	0	-0.020	0.020		yes
Chrysene	ng/mL	0	-0.099	0.099		yes
Dibenzo(a,h)anthracene	ng/mL	0	-0.009	0.009		yes
Fluoranthene	ng/mL	0	-0.099	0.099		yes
Fluorene	ng/mL	0	-0.099	0.099		yes
Indeno(1,2,3-c,d)pyrene	ng/mL	0	-0.099	0.099		yes
Naphthalene	ng/mL	0	-0.099	0.099		yes
Phenanthrene	ng/mL	0	-0.099	0.099		yes
Pyrene	ng/mL	0	-0.020	0.020		yes
Quinoline	ng/mL	0	-0.099	0.099		yes
Date Acquired: Septem	nber 29, 2018					
Calibration Check	Units	% Recovery	Lower Limit	Upper Limit		Passed QC
Acenaphthene	ng/mL	103.40	80	120		yes
Acenaphthylene	ng/mL	116.79	80	120		yes
Acridine	ng/mL	97.27	80	120		yes
Anthracene	ng/mL	112.12	80	120		yes
Benzo(a)anthracene	ng/mL	106.98	80	120		yes
Benzo(a)pyrene	ng/mL	103.28	80	120		yes
Benzo(b)fluoranthene	ng/mL	103.76	80	120		yes
Benzo(g,h,i)perylene	ng/mL	94.00	80	120		yes
Benzo(j)fluoranthene	ng/mL	91.47	80	120		yes
Benzo(k)fluoranthene	ng/mL	112.80	80	120		yes
Chrysene	ng/mL	100.61	80	120		yes
Dibenzo(a,h)anthracene	ng/mL	99.58	80	120		yes
Fluoranthene	ng/mL	102.74	80	120		yes
Fluorene	ng/mL	104.11	80	120		yes
Indeno(1,2,3-c,d)pyrene	ng/mL	97.24	80	120		yes
Naphthalene	ng/mL	103.89	80	120		yes
Phenanthrene	ng/mL	106.21	80	120		yes
Pyrene	ng/mL	110.08	80	120		yes
Quinoline	ng/mL	96.15	80	120		yes
Date Acquired: Septem	nber 29, 2018					
Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Quality Control

Bill To: TerraWest Environmental Inc.

206, 2800 Bryn Maur Road Victoria, BC, Canada

Project Name: DCMM18-01 Project Location: Port Alberni

Project ID:

LSD:

Lot ID: 1300986

Control Number:

2018447.01

Date Received: Sep 27, 2018 Date Reported: Oct 22, 2018 Report Number: 2327037

P.O.: Attn: Accounts Payable Sampled By: Derek Nickel Proj. Acct. code:

Company: TerraWest

V9B 3T4

Vater - Continued	drocarbons -					
Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed Q
Acenaphthene	µg/L	<0.1	<0.1	20	0.500	
Acenaphthylene	μg/L	<0.1	<0.1	20	0.500	ye ve
Acridine	· -	0.11	0.11	20	0.300	ye
	μg/L	<0.11	0.11 <0.1		0.250	ye
Anthracene	μg/L			20		ye
Benzo(a)anthracene	μg/L	0.10	0.10	20	0.050	ye
Benzo(a)pyrene	μg/L	0.10	0.10	20	0.050	ye
Benzo(b)fluoranthene	μg/L "	0.10	0.11	20	0.050	ye
Benzo(g,h,i)perylene	μg/L "	0.1	0.1	20	0.500	ye
Benzo(k)fluoranthene	μg/L "	0.10	0.10	20	0.100	ye
Chrysene	μg/L	0.1	0.1	20	0.500	y€
Dibenzo(a,h)anthracene	μg/L	0.10	0.11	20	0.050	ye
Fluoranthene	μg/L	0.1	0.1	20	0.500	ye
Fluorene	μg/L	0.1	0.1	20	0.500	ye
Indeno(1,2,3-c,d)pyrene	μg/L	0.1	0.1	20	0.500	ye
Naphthalene	μg/L	<0.1	<0.1	20	0.500	ye
Phenanthrene	μg/L	<0.1	<0.1	20	0.500	ye
Pyrene	μg/L	0.11	0.11	20	0.100	ye
Quinoline	μg/L	0.11	0.11	20	1.700	ye
Date Acquired: Septem	ber 29, 2018					
Control Sample	Units	Measured	Lower Limit	Upper Limit		Passed C
Acenaphthene	μg/L	92.8	50.010	129.990		ye
Acenaphthylene	μg/L	94.3	50.010	129.990		y
Acridine	μg/L	108.39	59.990	130.010		ye
Anthracene	μg/L	97.7	59.990	130.010		y
Benzo(a)anthracene	μg/L	100.80	59.990	130.010		ye
Benzo(a)pyrene	μg/L	98.79	59.990	130.010		ye
Benzo(b)fluoranthene	μg/L	103.03	59.990	130.010		ye
Benzo(g,h,i)perylene	μg/L	102.0	59.990	130.010		ye
Benzo(k)fluoranthene	μg/L	98.19	59.990	130.010		y.
Chrysene	μg/L	103.8	59.990	130.010		ye
Dibenzo(a,h)anthracene	μg/L	103.54	59.990	130.010		y.
Fluoranthene	μg/L	109.7	59.990	130.010		y.
Fluorene	μg/L	103.7	50.010	129.990		ye
Indeno(1,2,3-c,d)pyrene	μg/L	103.0	59.990	130.010		ye.
Naphthalene	μg/L	99.8	50.010	129.990		y. Ye
Phenanthrene	μg/L	99.8	59.990	130.010		y. ye
Pyrene	μg/L	111.13	59.990	130.010		•
Quinoline	. •	108.60	50.010	129.990		ye
	μg/L nber 29, 2018	106.60	30.010	129.990		y
outine Water						
Client Sample Replicates	Unito	Donlinete 4	Donlingto 0	0/ DCD C=:40=:-	Absolute Criteria	Doored C
Chefit Sample Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed Q
Hardness	mg CaCO3/L	118	110	20	1.000	ye

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Lot ID: 1300986

Date Received: Sep 27, 2018

Date Reported: Oct 22, 2018

Report Number: 2327037

Control Number:

Quality Control

Bill To: TerraWest Environmental Inc.

206, 2800 Bryn Maur Road

Project Name: Victoria, BC, Canada Project Location: Port Alberni LSD:

Project ID:

V9B 3T4 P.O.: Attn: Accounts Payable

Sampled By: Derek Nickel Proj. Acct. code:

Company: TerraWest

Routine Water - Continued

Soil	Acidity

Client Sample Rep	licates Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria Passed QC
рН	рН	5.5	5.5	0	yes
Date Acquired:	October 03, 2018				
Control Sample	Units	Measured	Lower Limit	Upper Limit	Passed QC
рН	рН	4.0	3.9	4.1	yes
Date Acquired:	October 03, 2018				
рН	рН	7.9	7.9	8.1	yes
Date Acquired:	October 03, 2018				
рН	рН	7.3	7.0	7.6	yes
Date Acquired:	October 03, 2018				

2018447.01

DCMM18-01

Trace Metals Total

Blanks	Units	Measured	Lower Limit	Upper Limit	Passed QC
Aluminum	μg/L	0	-0.990	0.990	yes
Antimony	μg/L	-0.00100894	-0.020	0.020	yes
Arsenic	μg/L	0.000575845	-0.099	0.099	yes
Barium	μg/L	-0.0436569	-0.099	0.099	yes
Beryllium	μg/L	0.00659792	-0.050	0.050	yes
Bismuth	μg/L	-0.000768981	-0.099	0.099	yes
Boron	μg/L	-0.690529	-2.001	2.001	yes
Cadmium	μg/L	-0.00173009	-0.010	0.010	yes
Chromium	μg/L	-0.0288322	-0.050	0.050	yes
Cobalt	μg/L	-0.00231552	-0.020	0.020	yes
Copper	μg/L	0.00720172	-0.501	0.501	yes
Iron	μg/L	-1.48444	-2.001	2.001	yes
Lead	μg/L	0	-0.010	0.010	yes
Lithium	μg/L	4.3646e-005	-0.501	0.501	yes
Manganese	μg/L	0.0462714	-0.990	0.990	yes
Molybdenum	μg/L	-0.00228605	-0.020	0.020	yes
Nickel	μg/L	0.0152424	-0.201	0.201	yes
Selenium	μg/L	0.011161	-0.201	0.201	yes
Silver	μg/L	-0.00057429	-0.010	0.010	yes
Strontium	μg/L	-0.0290046	-0.099	0.099	yes
Tellurium	μg/L	-0.0227524	-0.050	0.050	yes
Thallium	μg/L	-0.000527096	-0.010	0.010	yes
Thorium	μg/L	-0.000175946	-0.050	0.050	yes
Tin	μg/L	0.0223038	-0.099	0.099	yes
Titanium	μg/L	-0.0811536	-0.099	0.099	yes
Uranium	μg/L	-0.000385229	-0.099	0.099	yes
Vanadium	μg/L	-0.0430993	-0.050	0.050	yes
Zinc	μg/L	0	-0.501	0.501	yes
Zirconium	μg/L	0.00685125	-0.099	0.099	yes
Date Acquired:	September 27, 2018				

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Quality Control

Bill To: TerraWest Environmental Inc.

206, 2800 Bryn Maur Road

Victoria, BC, Canada

V9B 3T4

Attn: Accounts Payable Sampled By: Derek Nickel

Company: TerraWest

Project ID: 2018447.01 Project Name:

Proj. Acct. code:

LSD:

P.O.:

DCMM18-01

Project Location: Port Alberni

Date Received: Sep 27, 2018

Date Reported: Oct 22, 2018

Lot ID: 1300986

Report Number: 2327037

Control Number:

Trace Metals Tot	al - Continued				
Calibration Check	Units	% Recovery	Lower Limit	Upper Limit	Passed QC
Aluminum	μg/L	112.76	80	120	yes
Antimony	μg/L	93.09	90	110	yes
Arsenic	μg/L	95.46	90	110	yes
Barium	μg/L	96.66	90	110	yes
Beryllium	μg/L	93.49	90	110	yes
Boron	μg/L	100.69	70	130	yes
Cadmium	μg/L	93.67	90	110	yes
Chromium	μg/L	94.10	90	110	yes
Cobalt	μg/L	97.74	90	110	yes
Copper	μg/L	96.38	90	110	yes
Lead	μg/L	92.69	90	110	yes
Lithium	μg/L	95.66	90	110	yes
Molybdenum	μg/L	97.38	90	110	yes
Nickel	μg/L	98.28	90	110	yes
Selenium	μg/L	96.43	90	110	yes
Silver	μg/L	98.08	90	110	yes
Strontium	μg/L	97.99	90	110	yes
Thallium	μg/L	99.30	90	110	yes
Thorium	μg/L	93.34	90	110	yes
Tin	μg/L	94.96	90	110	yes
Titanium	μg/L	105.07	90	110	yes
Uranium	μg/L	90.40	90	110	yes
Vanadium	μg/L	93.54	90	110	yes
Zinc	μg/L	101.19	90	110	yes
Date Acquired:	September 27, 2018				
Aluminum	μg/L	92.86	80	120	yes
Antimony	μg/L	95.29	90	110	yes
Arsenic	μg/L	92.92	90	110	yes
Barium	μg/L	96.54	90	110	yes
Beryllium	μg/L	95.77	90	110	yes
Boron	μg/L	93.56	80	120	yes
Cadmium	μg/L	95.94	90	110	yes
Chromium	μg/L	94.87	90	110	yes
Cobalt	μg/L	95.61	90	110	yes
Copper	μg/L	91.52	90	110	yes
Lead	μg/L	93.23	90	110	yes
Lithium	μg/L	94.87	90	110	yes
Molybdenum	μg/L	96.87	90	110	yes
Nickel	μg/L	96.06	90	110	yes
Selenium	μg/L	96.05	90	110	yes
Silver	μg/L	98.17	90	110	yes
Strontium	μg/L	96.26	90	110	yes
Thallium	μg/L	96.28	90	110	yes
Thorium	μg/L	93.98	90	110	yes
Tin	μg/L	93.28	90	110	yes

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Lot ID: 1300986

Quality Control

Bill To: TerraWest Environmental Inc. Project ID: 2018447.01

> 206, 2800 Bryn Maur Road Project Name: Control Number: DCMM18-01

> Victoria, BC, Canada Project Location: Port Alberni

Date Received: Sep 27, 2018 V9B 3T4 LSD: Date Reported: Oct 22, 2018 P.O.: Report Number: 2327037 Attn: Accounts Payable

Sampled By: Derek Nickel Proj. Acct. code:

Company: TerraWest						
Trace Metals Total - Co	ontinued					
Calibration Check	Units	% Recovery	Lower Limit	Upper Limit		Passed QC
Titanium	μg/L	92.42	90	110		yes
Uranium	μg/L	90.14	90	110		yes
Vanadium	μg/L	92.73	90	110		yes
Zinc	μg/L	93.37	90	110		yes
Date Acquired: Septe	mber 27, 2018					
Volatile Petroleum Hyd	drocarbons - Soil	I				
Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
VHs6-10	ng	0	-50	50		yes
VPHs (VHs6-10 minus	ng	0	-50	50		yes
Date Acquired: Septe	mber 27, 2018					
Calibration Check	Units	% Recovery	Lower Limit	Upper Limit		Passed QC
VHs6-10	ng	81.89	80	120		yes
Date Acquired: Septe	mber 27, 2018					
VHs6-10	ng	88.11	75	125		yes
VPHs (VHs6-10 minus	ng	3.82	75	125		yes
Date Acquired: Septe	mber 27, 2018					
VHs6-10	ng	116.67	50	150		yes
Date Acquired: Septe	mber 27, 2018					,
Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
VHs6-10	μg/g	<50	<50	20	10	yes
VPHs (VHs6-10 minus	μg/g	<50	<50	20	10	yes
VHs6-oXylene	μg/g	<50	<50	20	10	yes
VHsoXylene-10	μg/g	<50	<50	20	10	yes
•	mber 27, 2018					,
Matrix Spike	Units	% Recovery	Lower Limit	Upper Limit		Passed QC
VHs6-10	μg/g	95	80	120		yes
	mber 27, 2018					,
Volatile Petroleum Hyd	drooarbone Wat	·or				
Blanks	Units	Measured	Lower Limit	Upper Limit		Passed QC
VPHw (VHw6-10 minus	ng	0	-50	50		yes
VHw6-10	ng	0	-50	50		yes
	mber 27, 2018	v	00	00		, , ,
Calibration Check	Units	0/ Decement	Lower Limit	Upper Limit		Passed QC
VHw6-10		% Recovery 98.07	80	120		
	ng mbor 27, 2018	90.07	60	120		yes
·	mber 27, 2018	5	D "	0/ DOD 0 !/ !		
Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
VPHw (VHw6-10 minus	μg/L ···~//	<50	<50	20	100	yes
VHw6-10	µg/L	<50	<50	20	100	yes
	mber 27, 2018		_			
Matrix Spike	Units	% Recovery	Lower Limit	Upper Limit		Passed QC
VHw6-10	μg/L	96	80	120		yes

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Quality Control

Bill To: TerraWest Environmental Inc.

Project ID:

2018447.01

Control Number:

Lot ID: 1300986

206, 2800 Bryn Maur Road Victoria, BC, Canada

Project Name: Project Location:

LSD:

DCMM18-01 Port Alberni

Date Received: Sep 27, 2018 Date Reported: Oct 22, 2018

P.O.: Attn: Accounts Payable

September 27, 2018

Report Number: 2327037

Sampled By: Derek Nickel

V9B 3T4

Proj. Acct. code:

Company: TerraWest

Date Acquired:

Volatile Petroleum Hydrocarbons - Water

- Continued

Matrix Spike Units % Recovery

Upper Limit

Lower Limit

Passed QC

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Methodology and Notes

Bill To: TerraWest Environmental Inc.

206, 2800 Bryn Maur Road

Victoria, BC, Canada

V9B 3T4

Attn: Accounts Payable

Sampled By: Derek Nickel Company: TerraWest

Project ID: 2018447.01 Project Name: DCMM18-01

LSD:

P.O.:

Proj. Acct. code:

Project Location: Port Alberni

Control Number:

Date Received: Sep 27, 2018 Date Reported: Oct 22, 2018

Lot ID: 1300986

Report Number: 2327037

Method of Analysis				
Method Name	Reference	Method	Date Analysis Started	Location
BTEX-VPH - Soil (Surrey)	BCELM	 Volatile Hydrocarbons in Solids by GC/FID, VH Solids 	Sep 27, 2018	Exova Surrey
BTEX-VPH - Water (MS) (Surrey)	B.C.M.O.E	 Volatile Hydrocarbons in Waters by GC/FID (April, 2007), CSR 	Sep 27, 2018	Exova Surrey
BTEX-VPH - Water (MS) (Surrey)	BCELM	 Volatile Hydrocarbons in Water by GC/FID, VH Water 	Sep 27, 2018	Exova Surrey
EPH - Soil	B.C.M.O.E	 * EPH in Solids by GC/FID (Dec. 31, 2000 EPH in Solids), Sep 27, 2018	Exova Surrey
EPH - Soil	BCELM	 * Extractable Petroleum Hydrocarbons (EPH) in Solids by GC/FID, EPH Solids 	Sep 27, 2018	Exova Surrey
EPH - Water (Surrey)	BCELM	Calculation of Light and Heavy Extractable Petroleum Hydrocarbons in Solids or Waters (LEPH & HEPH)., LEPH/HEPH Calculation	Sep 28, 2018	Exova Surrey
EPH - Water (Surrey)	BCELM	 Extractable Petroleum Hydrocarbons (EPH) in Water by GC/FID, EPH Water 	Sep 28, 2018	Exova Surrey
Metals (Strong Acid Leachable) in soils (Surrey)	B.C.M.O.E	 * Strong Acid Leachable Metals (SALM) ir Soil, V 1.0, SALM 	Oct 1, 2018	Exova Surrey
Metals (Strong Acid Leachable) in soils (Surrey)	US EPA	 Mercury in Solid and Semi-Solid Wastes (Cold Vapour), 7471B 	Oct 1, 2018	Exova Surrey
PAH - Soil (Surrey)	BCELM	 Polycyclic Aromatic Hydrocarbons in Solids by GC/MS - PBM, PAH Solids 	Sep 27, 2018	Exova Surrey
PAH - Soil (Surrey)	US EPA	 Semivolatile Organic Compounds by Ga Chromatography/Mass Spectrometry, 8270 	Sep 27, 2018	Exova Surrey
PAH - Water (Surrey)	BCELM	 Polycyclic Aromatic Hydrocarbons in Water by GC/MS - PBM, PAH Water 	Sep 29, 2018	Exova Surrey
PAH - Water (Surrey)	BCELM	 Polycyclic Aromatic Hydrocarbons in Water by GC/MS - PBM, PAH Water 	Oct 1, 2018	Exova Surrey
PCP - Soil	US EPA	 Semivolatile Organic Compounds by Ga Chromatography/Mass Spectrometry, 8270 	Sep 28, 2018	Exova Calgary
pH and EC - 1:2 (Surrey)	Carter	* Soil pH (1:2 Water), 16.2	Oct 1, 2018	Exova Surrey
Trace Metals (Total) in Water (Surrey)	US EPA	 Determination of Trace Elements in Waters and Wastes by ICP-MS, 200.8 	Sep 27, 2018	Exova Surrey
		* Reference Method Modified		

References

B.C.M.O.E B.C. Ministry of Environment

BCELM B.C. Environmental Laboratory Manual Carter Soil Sampling and Methods of Analysis.

US EPA US Environmental Protection Agency Test Methods

Comments:

• Sep 28, 2018 - Reduction of analytical volume was necessary for metals analysis to bring results within the analytical range for samples. Detection

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Lot ID: 1300986

Control Number:

Methodology and Notes

Bill To: TerraWest Environmental Inc. Project ID: 2018447.01

206, 2800 Bryn Maur Road Project Name: DCMM18-01

Victoria, BC, Canada Project Location: Port Alberni Date Received: Sep 27, 2018
V9B 3T4 LSD: Date Reported: Oct 22, 2018
Attn: Accounts Payable P.O.: Report Number: 2327037

Sampled By: Derek Nickel Proj. Acct. code:

Company: TerraWest

limits are adjusted accordingly.

• Oct 22, 2018 - Dioxin and furan analysis was performed by a subcontract laboratory. See attached 7 page report PR182812.

Please direct any inquiries regarding this report to our Client Services Group or to the Operations Manager at the coordinates indicated at the top left of this page.

Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

SAMPLE RECEIPT FORM / CHEMICAL ANALYSIS FORM

FILE #: PR182812 CLIENT: Exova

#104, 19575 55A Avenue

Surrey, BC V3S 8P8

Phone: (604) 514-3322 Fax: (604) 514-3323 Email: Surrey@exova.com

RECEIVED BY: M. Cavaliere DATE/TIME: September 27, 2018 (11:30 a.m.)

CONDITION: Okay, 16.8°C

# of Containers	Sample Type	Sample (Client Codes)	Lab Codes	Test Requested
		PO#: POC113407		
1	Soil	1300986-1	PR182812	PCDD/F
1	Soil	1300986-2	PR182813	PCDD/F
1	Soil	1300986-3	PR182814	PCDD/F

STORAGE: Stored at <-10°C.

ANALYTES: HRGC/HRMS analysis for polychlorinated dibenzo(p)dioxins and dibenzofurans (PCDD/F).

SPECIAL INSTRUCTIONS: none

METHODOLOGY

Reference Method: PCDD/F: SOP LAB01; EPA Method 1613b

Data summarized in Data Report Attached

Report sent to: Client Services Date: October 22, 2018

Comments: Results relate only to items tested.

Digitally signed by Patrick Pond DN: cn=Patrick Pond, o=Pacific Rim Laboratories Inc., ou=CTO, email=Pat@pacificrimlabs.com,

Date: 2018.10.22 15:12:50

-07'00'

Patrick Pond, C. Chem, CTO

DATA REPORT

 Client:
 Exova Surrey
 Contact:
 Client Services

 Client ID:
 1390086-1
 Date Extracted:
 04-Oct-18

 PRL ID:
 PR182812
 Date Analysed:
 18-Oct-18

DIOXINS			Surrogate
	Conc.	DL	Recoveries
Congeners	ng/kg	ng/kg	%
2,3,7,8-TCDD	2.1	0.2	84
Total TCDD	30	0.2	
1,2,3,7,8-PeCDD	32	0.3	74
Total PeCDD	140	0.3	
1,2,3,4,7,8-HxCDD	76	0.5	86
1,2,3,6,7,8-HxCDD	210	0.5	84
1,2,3,7,8,9-HxCDD	81	0.5	-
Total HxCDD	1100	0.5	
1,2,3,4,6,7,8-HpCDD	3800	0.7	98
Total HpCDD	7200	0.7	
·			
OCDD	11000	1	108
		Total Dio	xin TEQ

I-TEQs				
(ND=0)	(ND=DL)			
ng/kg	ng/kg			
2.1	2.1			
16	16			
7.6	7.6			
21	21			
8.1	8.1			
38	38			
24.2				
11	11			
104	104			

WHO-TEQs (2005)				
(ND=0)	(ND=DL)			
ng/kg	ng/kg			
2.1	2.1			
32	32			
2				
7.6	7.6			
21	21			
8.1	8.1			
38	38			
3.3	3.3			
112	112			

FURANS			Surrogate
		DL	Recoveries
Congeners	ng/kg	ng/kg	%
2,3,7,8-TCDF	4.2	0.2	64
Total TCDF	88	0.2	
1,2,3,7,8-PeCDF	7.2	0.3	68
2,3,4,7,8-PeCDF	9.7	0.3	78
Total PeCDF	280	0.3	
1,2,3,4,7,8-HxCDF	31	0.5	76
1,2,3,6,7,8-HxCDF	30	0.5	80
1,2,3,7,8,9-HxCDF	14	0.5	74
2,3,4,6,7,8-HxCDF	54	0.5	92
Total HxCDF	870	0.5	
1,2,3,4,6,7,8-HpCDF	830	0.7	98
1,2,3,4,7,8,9-HpCDF	95	0.7	78
Total HpCDF	3600	0.7	
OCDF	2000	1	-
	•	Total Fura	an TEQ

I-TEQs				
	(ND=DL)			
ng/kg	ng/kg			
0.42	0.42			
0.36	0.36			
4.85	4.85			
3.1	3.1			
3	3			
1.4	1.4			
5.4	5.4			
8.3	8.3			
0.95	0.95			
2	2			
30	30			

WHO-TEQs (2005)			
(ND=0)	(ND=DL)		
ng/kg	ng/kg		
0.42	0.42		
0.216	0.216		
2.91	2.91		
3.1	3.1		
3	3		
1.4	1.4		
5.4	5.4		
0.0	0.0		
8.3	8.3		
0.95	0.95		
0.6	0.6		
26	26		

Total PCDD/PCDF Toxic Equivalent

133.58 133.58

138.40 138.40

DATA REPORT

 Client:
 Exova Surrey
 Contact:
 Client Services

 Client ID:
 1390086-2
 Date Extracted:
 04-Oct-18

 PRL ID:
 PR182813
 Date Analysed:
 18-Oct-18

DIOXINS			Surrogate
	Conc.	DL	Recoveries
Congeners	ng/kg	ng/kg	%
2,3,7,8-TCDD	ND	0.2	68
Total TCDD	2.9	0.2	
1,2,3,7,8-PeCDD	2.6	0.3	68
Total PeCDD	2.9	0.3	
1,2,3,4,7,8-HxCDD	ND	0.5	78
1,2,3,6,7,8-HxCDD	5.4	0.5	84
1,2,3,7,8,9-HxCDD	2.7	0.5	-
Total HxCDD	45	0.5	
1,2,3,4,6,7,8-HpCDD	140	0.7	78
Total HpCDD	350	0.7	
OCDD	1300	1	92
		Total Diox	kin TEQ

I-TEQs				
(ND=0)	(ND=DL)			
ng/kg	ng/kg			
ND	0.2			
1.3	1.3			
NID	0.05			
ND	0.05			
0.54	0.54			
0.27	0.27			
1.4	1.4			
1.4	1.4			
1.3	1.3			
4.8	5.1			

WHO-TEQs (2005)				
(ND=0)	(ND=DL)			
ng/kg	ng/kg			
ND	0.2			
2.6	2.6			
ND	0.05			
0.54	0.54			
0.27	0.27			
1.4	1.4			
1.4	1.4			
0.39	0.39			
5.2	5.5			

FURANS	Surrogate		
		DL	Recoveries
Congeners	ng/kg	ng/kg	%
2,3,7,8-TCDF	ND	0.2	54
Total TCDF	17	0.2	
1,2,3,7,8-PeCDF	0.72	0.3	58
2,3,4,7,8-PeCDF	1.2	0.3	76
Total PeCDF	19	0.3	
1,2,3,4,7,8-HxCDF	1.1	0.5	72
1,2,3,6,7,8-HxCDF	1.9	0.5	76
1,2,3,7,8,9-HxCDF	ND	0.5	72
2,3,4,6,7,8-HxCDF	2.6	0.5	90
Total HxCDF	32	0.5	
1,2,3,4,6,7,8-HpCDF	27	0.7	86
1,2,3,4,7,8,9-HpCDF	2.4	0.7	78
Total HpCDF	110	0.7	
OCDF	91	1	
		Total Fura	an TEQ

I-TEQs				
(ND=0)	(ND=DL)			
ng/kg	ng/kg			
ND	0.02			
0.04	0.04			
0.60	0.60			
0.11	0.11			
0.19	0.19			
ND	0.05			
0.26	0.26			
0.27	0.27			
0.02	0.02			
0.00	0.00			
0.09	0.09			
1.6	1.7			

WHO-TE	Qs (2005)
(ND=0)	(ND=DL)
ng/kg	ng/kg
ND	0.02
0.02	0.02
0.36	0.36
0.11	0.11
0.19	0.19
ND	0.05
0.26	0.26
DO 240 W	
0.27	0.27
0.02	0.02
0.03	0.03
1.3	1.3
1.3	1.3

			_
Total	PCDD/PCDF	Toxic Equivalent	

6 20 1	6 71

6.46	6.78

DATA REPORT

 Client:
 Exova Surrey

 Client ID:
 1390086-3

 PRL ID:
 PR182814

Contact:
Date Extracted:
Date Analysed:

Client Services 04-Oct-18

18-Oct-18 ###

DIOXINS			Surrogate
	Conc.	DL	Recoveries
Congeners	ng/kg	ng/kg	%
2,3,7,8-TCDD	ND	0.2	52
Total TCDD	2.1	0.2	
1,2,3,7,8-PeCDD	ND	0.3	58
Total PeCDD	ND	0.3	
1,2,3,4,7,8-HxCDD	ND	0.5	64
1,2,3,6,7,8-HxCDD	ND	0.5	68
1,2,3,7,8,9-HxCDD	1.3	0.5	-
Total HxCDD	28	0.5	
1,2,3,4,6,7,8-HpCDD	41	0.7	68
Total HpCDD	89	0.7	
0.000			
OCDD	320	1	76
		Total Dio	kin TEQ

I-TE	Q s
(ND=0)	(ND=DL)
ng/kg	ng/kg
ND	0.2
ND	0.15
ND	0.05
ND	0.05
0.13	0.13
0.41	0.41
0.00	0.00
0.32	0.32
0.86	1.3

WHO-TE	Qs (2005)
(ND=0)	(ND=DL)
ng/kg	ng/kg
ND	0.2
ND	0.3
ND	0.05
ND	0.05
0.13	0.13
0.41	0.41
0.10	0.10
0.64	1.2

FURANS			Surrogate
		DL	Recoveries
Congeners	ng/kg	ng/kg	%
2,3,7,8-TCDF	ND	0.2	48
Total TCDF	8.2	0.2	
1,2,3,7,8-PeCDF	ND	0.3	52
2,3,4,7,8-PeCDF	ND	0.3	56
Total PeCDF	25	0.3	
1,2,3,4,7,8-HxCDF	ND	0.5	56
1,2,3,6,7,8-HxCDF	0.94	0.5	62
1,2,3,7,8,9-HxCDF	ND	0.5	64
2,3,4,6,7,8-HxCDF	0.78	0.5	74
Total HxCDF	14	0.5	
1,2,3,4,6,7,8-HpCDF	6.1	0.7	70
1,2,3,4,7,8,9-HpCDF	0.8	0.7	60
Total HpCDF	23	0.7	
OCDF	18	1	(=)
		Total Fura	an TEQ

I-TE	EQs
(ND=0)	(ND=DL)
ng/kg	ng/kg
ND	0.02
ND	0.015
ND	0.15
ND	0.05
0.094	0.094
ND	0.05
0.078	0.078
0.06	0.06
0.00	0.00
0.01	3.01
0.02	0.02
0.26	0.54

WHO-TE	Qs (2005)
(ND=0)	(ND=DL)
ng/kg	ng/kg
ND	0.02
ND	0.009
ND	0.09
ND	0.05
0.094	0.094
ND	0.05
0.078	0.078
0.06	0.06
0.01	0.01
0.01	0.01
0.25	0.47

Total P	CDD/PCDF	Toxic Ed	uivalent

1 1 2 1	105

0.88	1.70

QC REPORT - BLANK

 Client:
 Exova Surrey
 Contact:
 Client Services

 Client ID:
 BLANK
 Date Extracted:
 04-Oct-18

 PRL ID:
 DF 180817B
 Date Analysed:
 18-Oct-18

DIOXINS			Surrogate
	Conc.	DL	Recoveries
Congeners	ng/kg	ng/kg	%
2,3,7,8-TCDD	ND	0.2	46
Total TCDD	ND	0.2	
1,2,3,7,8-PeCDD	ND	0.3	62
Total PeCDD	ND	0.3	
1,2,3,4,7,8-HxCDD	ND	0.5	74
1,2,3,6,7,8-HxCDD	ND	0.5	80
1,2,3,7,8,9-HxCDD	ND	0.5	·-
Total HxCDD	ND	0.5	
1,2,3,4,6,7,8-HpCDD	ND	0.7	82
Total HpCDD	ND	0.7	
			1
OCDD	ND	1	86
·		Total Dio	rin TFQ

I-TE	EQs
(ND=0)	(ND=DL)
ng/kg	ng/kg
ND	0.2
ND	0.15
ND	0.05
ND	0.05
ND	0.05
ND	0.007
NID	0.004
ND	0.001
0.00	0.51

WHO-TE	Qs (2005)
(ND=0)	(ND=DL)
ng/kg	ng/kg
ND	0.2
ND	0.3
ND	0.05
ND	0.05
ND	0.05
ND	0.007
ND	0.0003
0.00	0.66

FURANS		Surrogate	
		DL	Recoveries
Congeners	ng/kg	ng/kg	%
2,3,7,8-TCDF	ND	0.2	36
Total TCDF	ND	0.2	
1,2,3,7,8-PeCDF	ND	0.3	50
2,3,4,7,8-PeCDF	ND	0.3	60
Total PeCDF	ND	0.3	
1,2,3,4,7,8-HxCDF	ND	0.5	60
1,2,3,6,7,8-HxCDF	ND	0.5	64
1,2,3,7,8,9-HxCDF	ND	0.5	74
2,3,4,6,7,8-HxCDF	ND	0.5	86
Total HxCDF	ND	0.5	
1,2,3,4,6,7,8-HpCDF	ND	0.7	74
1,2,3,4,7,8,9-HpCDF	ND	0.7	74
Total HpCDF	ND	0.7	
OCDF	ND	1	
	_	Total Fura	an TEQ

I-TEQs									
(ND=0)	(ND=DL)								
ng/kg	ng/kg								
ND	0.02								
ND	0.015								
ND	0.15								
ND	0.05								
ND	0.05								
ND	0.05								
ND	0.05								
ND	0.007								
ND	0.007								
ND	0.001								
0.00	0.40								

WHO-TEQs (2005							
(ND=0)	(ND=DL)						
ng/kg	ng/kg						
ND	0.02						
ND	0.009						
ND	0.09						
ND	0.05						
ND	0.05						
ND	0.05						
ND	0.05						
ND	0.007						
ND	0.007						
ND	0.0003						
0.00	0.33						

Total PCDD/PCDF Toxic Equivalent	0.00	0.91	0.00	0.99

Acronyms used in reporting dioxins and furans:

TCDD = Tetrachlorodibenzo-p-dioxin	TCDF = Tetrachlorodibenzofuran
PeCDD = Pentachlorodibenzo-p-dioxin	PeCDF = Pentachlorodibenzofuran
HxCDD = Hexachlorodibenzo-p-dioxin	HxCDF = Hexachlorodibenzofuran
HpCDD = Heptachlorodibenzo-p-dioxin	HpCDF = Heptachlorodibenzofuran
OCDD = Octachlorodibenzo-p-dioxin	OCDF = Octachlorodibenzofuran

Acceptable recoveries for surrogates	EPA 1	1613
	Min (%)	Max (%)
¹³ C ₁₂ -2,3,7,8-TCDD	25	164
¹³ C ₁₂ -1,2,3,7,8-PeCDD	25	181
¹³ C ₁₂ -1,2,3,4,7,8-HxCDD	32	141
¹³ C ₁₂ -1,2,3,6,7,8-HxCDD	28	130
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDD	23	140
¹³ C ₁₂ -OCDD	17	157
¹³ C ₁₂ -2,3,7,8-TCDF	24	169
¹³ C ₁₂ -1,2,3,7,8-PeCDF	24	185
¹³ C ₁₂ -2,3,4,7,8-PeCDF	21	178
¹³ C ₁₂ -1,2,3,4,7,8-HxCDF	26	152
¹³ C ₁₂ -1,2,3,6,7,8-HxCDF	26	123
¹³ C ₁₂ -1,2,3,7,8,9-HxCDF	29	147
¹³ C ₁₂ -2,3,4,6,7,8-HxCDF	28	136
¹³ C ₁₂ -1,2,3,4,6,7,8-HpCDF	28	143
¹³ C ₁₂ -1,2,3,4,7,8,9-HpCDF	26	138

Exova #104, 19575-55 A Ave. Surrey, BC Canada, V3S 8P8 T: (604) 514-3322 F: (604) 514-3323 E: Surrey@exova.com W: www.exova.com

External Sublet Request

Lot: 1300986

Number of Samples: 3

Printed Date: Sep 27, 2018

Page 1 of 1

					rage for i
Sublet Requested		Exova Cont	act:	Questions can be directed to Exova Surrey	
Attn: Patrick Por	nd				Client Services at (604) 514-3322.
Pacific Rim Labor	ratories Inc.				
103	E.		Email Resul	Its to:	Surrey@exova.com
19575 - 55A Aver	nue				
Surrey, BC V3S			Mail Invoice	to:	2395 Speakman Dr.,
Tel: (604) 532-8					Mississauga, ON L5K 1B3, Canada
Fax: (604) 532-8					E: accpayable.americas@exova.com
1 dx. (001) 002 0	, 12		Due Date:		October 19, 2018
			PO#:	POC11340	07
			The PO # Mu	ust be Recor	ded on all invoices.
Sample Id	Sample Date	Service			rice Name
1300986 - 1	Sep 26, 2018 (3R182812	DFS		Dioxins and f	furans in soil
1300986 - 2	Sep 26, 2018 PR 1828 13	DFS		Dioxins and f	furans in soil
1300986 - 3	Sep 26, 2018 PR 18 28 14	DFS		Dioxins and f	furans in soil
4	**If rush surcharge is rec **Samples received are				
Special Instructio	ns:				
Relinq	uished by:		_	Receive	ed by:
	Company:		_		pany:
Date					D-4

	Testing, Invoice To: Report To:										Repo	rt	Regulatory											
EX	ova	calibrating,	Company	Terra	West Env	/ironm	ental I	nc.	Compan	Company TerraWest Environmental Inc.								Results			Requirer	nent		
www	exova.com	advising.			2800 Bryn				Address	3148-F Barons Road, Nanaimo, BC										E-Mail	×	HCDWQG		
Proj	ect Inform	nation		Victor	ia, BC VS	B 3T4				V9T 48	V9T 4B5										Mail		Ab Tier 1	
Proje	ct ID	2018447.01	Attention	Accou	unts Paya	ble			Attention	Derel	Derek Nickel										Online		SPIGEC	
Proje	ct Name	DCMM18-01	Phone	866-50	0-1553				Phone												Fax		BCCSR	×
Proje	ct Location	Port Alberni	Cell						Cell	1250	216-	431	3								PDF	×	Other (list b	elow)
Legal	Location		Fax						Fax												Excel	×		
PO/A	=E#		E-mail	kmarl	ks@terrav	vest.c	<u>a</u>		E-mail 1	dnick	el@	@terrawest.ca									QA/QC	X		
Proj.	Acct. Code		Agreeme	nt ID					E-mail 2	ebell	@te	rraw	est	.ca									Custody	
Quote	#		Copy of F						Copy of	Invoice	_	,,			_					_			se print)	
RUSH Priority											Ш								ı	Sampled by	y: Der	ek Nickel		
Emergency (contact lab for turnaround and pricing) When "ASAP" is request priority, with pricing and											Ш	±										7.00		
Priority 1-2 working days (100% surcharge) lab prior to						to submi	itting RU	SH samples. If not	all sample:	require		П	men							ı	Company: Te	erraWe	est	
Urgent 2-3 working days (50% surcharge)					F	RUSH, ple	ease indi	cate in the special i	nstructions	i.	ers	П	Sediment				15	١.			Lauthoriza E	vova to	proceed with t	he
Date Required Signature											Containers	Ш	.⊑	SL				water		I authorize Exova to proceed with the work indicated on this form:				
		I Instructions/Comments (ple	ease include	contact	information	includir	ng ph. #	if different from	above).		ပ္ပ	Ш	stals	Furans			>	3			Date:26 P	-	A STATE OF THE PARTY OF THE PAR	DN
Please report as per CSR Schedule 3.4 for Sediment samples										0	Me	ంర		_	ا إ	es					n for Lab	use		
									Number	СТЕН10	BCCSR Metals	Dioxins	PCP2	pH Soil	W39BC	Hardness			Date/Time					
											Ž	D	8	ei ei	PC	된 진	5 Š	: 2			gran serio	LULL	Q1ZX	
Depti					Date/Time		Sampling			Enter tests a					above			Indicate in the space allotted any						
	Site I.D.	Sample	description			start in ci	340.00	sampled	Matrix						evant samples below)					deficiencies by the corresponding number.			ing	
1		SS18-01						9/26/2018	Sedim	Grab	7	1	✓	✓	1	1	T	T		T		icate any samp	les that	
2		SS18-02						9/26/2018			7	1	✓	√	1	√	1			\neg		were	not packaged w	vell
3		SS18-03						9/26/2018			7	1	✓	1	✓	√						2. Ind	icate any samp	les not
4		SW18-01						9/26/2018			7						7 1	1				receiv	red in Exova su	pplies
5		SW18-02						9/26/2018	Water	Grab	7	П					/ v	~		\neg		3. Ind	icate any samp	les that
6		SW18-02A						9/26/2018	Water	Grab	1						~	1				were	not clearly labe	led
7		SW18-03						9/26/2018	Water	Grab	7						/ /	1				1.000	icate any samp red within the re	
8																						All married states	ime or temp.	Jan 30
9																						-	icate any missi	ng or
10																						extra	samples	
11																						-	icate any samp	
12					1							Ш			\Box	_		1	\sqcup	_			received broker	
13											1	Ш					_	_	$\bot \bot$	_		- 10° 11 11 11 11 11	icate any samp sufficient volu	
14											_					_	_	_	\perp	_		_	ceived	lee .
15															Ш	۰		Ι.	لِلــــــــــــــــــــــــــــــــــــ				icate any samp red in an inappi	
		Environmental Samp						ot: 13	งกกจร	36 COC	;						-		ng: C			conta	iner	
		r completion of this form is re	-7334 -5774-577-57	*****			s	_01. 1	1000C		111	111	Ш	111			-		size of received	. 1		TO VALUE - · · ·		
	Plea	se indicate any poter	itially haz	ardou	s sample	s		_8t. 14					$\ $	III					eceived	1	Delivery Me	ethod		
Page	1 of	1	Control	#								a) I	111	-11			-	10.		_	Waybill:			
	age1_ of1 Control #																R	eceiv	red by:	4				